Review
BibTex RIS Cite

Glokom, Parkinson hastalığı ve nörodejenerasyon

Year 2015, Volume: 28 Issue: 1, 8 - 12, 02.07.2015
https://doi.org/10.5472/MMJ.2015.03691.1

Abstract

Glokom, ilerleyici retinal ganglion hücre (RGH) çümü ile karakterize olup, geri dönüşümsüz görme kaybına neden olan bir hastalıktır. Glokomatöz nörodejenerasyonun patogenezinde göz içi basıncından bağımsız mekanizmalar gündeme gelmiştir ve bu mekanizmalar Alzheimer ve Parkinson hastalığı gibi nörodejeneratif hastalıkların patogenezi ile benzerlikler göstermektedir. Etyopatogenezde ortak noktalar tespit edilmiş olsa da glokom ve nörodejeneratif hastalıklar arasındaki ilişki net değildir. Optik koherens tomografi (OKT), glokomlu hastalarda RGH hasarına bağlı olarak, etkilenen retina sinir lifi tabakasının (RSLT) non-invaziv olarak görüntülenmesini sağlayan bir görüntüleme yöntemidir. Son zamanlarda OKT ile RSLT kalınlık ölçümleri, Parkinson hastalığı gibi nörodejeneratif hastalıklarda da çalışılmaya başlanmıştır. Aksonal hasar varlığında yapısal değişiklikler gösteren RSLT, nörodejenerasyonun invivo olarak tespit edilebilmesi için uygun bir model olmakta ve son zamanlarda glokomla ortak patogenezi olan ve nöron hasarı ile karakterize nörodejeneratif hastalıklarda, RSLT kalınlık ölçümlerinin takibi gündeme gelmektedir. Biz bu yazımızda, glakom, Parkinson hastalığı ve nörodejenerasyon arasındaki ilişikiyi anlatmağa çalıştık.

References

  • 1. Allingham R, Shields B, Damji K, et al. An overview of glaucoma. In: Allingham R, Damji K, Freedman S, Moroi S, Shafranov G, Shields B, eds. Shield’s Textbook of Glaucoma. 5th Edition. Philadelphia, PA: Lippincott Williams & Wilkins, 2005: 1-2.
  • 2. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389-93.
  • 3. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262–7.
  • 4. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-86.
  • 5. Quigley HA. Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest Ophthalmol Vis Sci 2005; 46: 2662-70.
  • 6. Agapova OA, Kaufman PL, Lucarelli MJ, et al. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res 2003; 96: 132-43.
  • 7. Pena JD, Agapova O, Gabelt BT, et al. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest Ophthalmol Vis Sci 2001; 42: 2303-14.
  • 8. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363: 1711-20.
  • 9. Levin LA, Schlamp CL, Spieldoch RL, et al. Identification of the bcl-2 family of genes in the rat retina. Invest Ophthalmol Vis Sci 1998; 38: 2545-53.
  • 10. Cordeiro MF, Guo L, Luong V, et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci 2004; 101: 13352–6.
  • 11. Guo L, Cordeiro MF. Assessment of neuroprotection in the retina with DARC. Prog Brain Res 2008; 173: 437–50. doi: 10.1016/S0079-6123(08)01130-8.
  • 12. Varma R, Bazzaz S, Lai M. Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci 2003; 44: 3369-73.
  • 13. Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 1982;100:807-12.
  • 14. Guo L, Moss SE, Alexander RA, et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46: 175-82.
  • 15. Garcia-Valenzuela E, Shareef S, Walsh J, et al. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61: 33–44.
  • 16. Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996; 114: 299-305.
  • 17. Dreyer EB, Pan ZH, Storm S, et al. Greater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death. Neuroreport. 1994; 31: 629-31.
  • 18. Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm 2006; 113: 1671-7.
  • 19. Beal MF. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 1998; 44: 110-4.
  • 20. Chiu K, Chan TF, Wu A, et al. Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina. Age (Dordr). 2012; 34: 633-49. doi: 10.1007/ s11357-011-9260-2.
  • 21. Copeland RL. Parkinson disease. Neurotox Res 2005; 8: 289- 93.
  • 22. Bodis-Wollner I, Yahr MD. Measurement of visual evoked potentials in Parkinson’s disease. Brain 1978; 101: 661–71.
  • 23. Regan D, Neima D. Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson’s disease. Br J Ophthalmol 1978; 68: 885–9.
  • 24. Yenice O, Onal S, Midi I, ve ark. Visual field analysis in patients with Parkinson’s disease. Parkinsonism Relat Disord 2008; 14: 193-8.
  • 25. Armstrong RA. Visual signs and symptoms of Parkinson’s disease. Clin Exp Optom 2008; 91: 129–38. doi: 10.1111/j.1444- 0938.2007.00211.x.
  • 26. Ehinger B. Functional role of dopamine in retina. Progress in Retinal Reseach 1983; 2: 213-32.
  • 27. Denis P, Normdan J, Elena PP, et al. Physiological roles of dopamine and neuropeptides in the retina. Fundam Clin Pharmacol 1993; 7: 293-304.
  • 28. Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 1990; 31: 2473-5.
  • 29. Galetta KM, Calabresi PA, Frohman EM, et al. Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration. Neurotherapeutics 2011; 1: 117-32. doi: 10.1007/s13311-010-0005-1.
  • 30. Hajee M, March W, Lazzaro D, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127: 737–41. doi: 10.1001/archophthalmol.2009.106.
  • 31. Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004; 44: 2793–7.
  • 32. Altintas O, Iseri PK, Ozkan B, ve ark. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 2007; 116: 137–46.
  • 33. Palmowski-Wolfe AM, Perez MT, Behnke S, et al. Influence of dopamine deficiency in early Parkinson’s disease on the slow stimulation multifocal-ERG. Doc Ophthalmol 2006; 112: 209-15.
  • 34. Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-40.
  • 35. Yüksel N. Nörodejeneratif hastalık olarak glokom. Turkiye Klinikleri J Ophthalmol-Special Topics 2012; 5: 14-8.
  • 36. Koppula S, Kumar H, More VS, et al. Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson’s disease. Int J Mol Sci 2012; 13: 10608– 29. doi: 10.3390/ijms130810608.

Glokom, Parkinson hastalığı ve nörodejenerasyon

Year 2015, Volume: 28 Issue: 1, 8 - 12, 02.07.2015
https://doi.org/10.5472/MMJ.2015.03691.1

Abstract

Glaucoma is a disease that causes irreversible vision loss characterized by progressive retinal ganglion cell (RGC) death. The mechanisms independent of intraocular pressure are also implicated in glaucomatous degeneration pathogenesis and numerous similarities exist between glaucoma and neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Although, there is a common pathway between glaucoma and neurodegenerative disorders, pathogenesis of the relationship between neurodegenerative disorders and glaucoma remains poorly undefined. Optical coherence tomography (OCT), noninvasively quantifies the thickness of the retinal nerve fiber layer (RNFL) which is effected due to RGC damage in glaucomatous patients. Recently, RNFL thickness measurements have been studied by using OCT in several neurodegenerative conditions, including Parkinson’s disease. The RNFL is unique as a model of neurodegeneration where the changes in its structure is represented with axonal damage. RNFL thickness measurements are important in neurodegenerative disorders which are characterized with neuronal loss and have common pathogenesis with glaucoma.In this review, we emphasize the relationship between glaucoma, Parkinson’s disease and neurodegeneration

References

  • 1. Allingham R, Shields B, Damji K, et al. An overview of glaucoma. In: Allingham R, Damji K, Freedman S, Moroi S, Shafranov G, Shields B, eds. Shield’s Textbook of Glaucoma. 5th Edition. Philadelphia, PA: Lippincott Williams & Wilkins, 2005: 1-2.
  • 2. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389-93.
  • 3. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262–7.
  • 4. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-86.
  • 5. Quigley HA. Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest Ophthalmol Vis Sci 2005; 46: 2662-70.
  • 6. Agapova OA, Kaufman PL, Lucarelli MJ, et al. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res 2003; 96: 132-43.
  • 7. Pena JD, Agapova O, Gabelt BT, et al. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest Ophthalmol Vis Sci 2001; 42: 2303-14.
  • 8. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363: 1711-20.
  • 9. Levin LA, Schlamp CL, Spieldoch RL, et al. Identification of the bcl-2 family of genes in the rat retina. Invest Ophthalmol Vis Sci 1998; 38: 2545-53.
  • 10. Cordeiro MF, Guo L, Luong V, et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci 2004; 101: 13352–6.
  • 11. Guo L, Cordeiro MF. Assessment of neuroprotection in the retina with DARC. Prog Brain Res 2008; 173: 437–50. doi: 10.1016/S0079-6123(08)01130-8.
  • 12. Varma R, Bazzaz S, Lai M. Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci 2003; 44: 3369-73.
  • 13. Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 1982;100:807-12.
  • 14. Guo L, Moss SE, Alexander RA, et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46: 175-82.
  • 15. Garcia-Valenzuela E, Shareef S, Walsh J, et al. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61: 33–44.
  • 16. Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996; 114: 299-305.
  • 17. Dreyer EB, Pan ZH, Storm S, et al. Greater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death. Neuroreport. 1994; 31: 629-31.
  • 18. Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm 2006; 113: 1671-7.
  • 19. Beal MF. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 1998; 44: 110-4.
  • 20. Chiu K, Chan TF, Wu A, et al. Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina. Age (Dordr). 2012; 34: 633-49. doi: 10.1007/ s11357-011-9260-2.
  • 21. Copeland RL. Parkinson disease. Neurotox Res 2005; 8: 289- 93.
  • 22. Bodis-Wollner I, Yahr MD. Measurement of visual evoked potentials in Parkinson’s disease. Brain 1978; 101: 661–71.
  • 23. Regan D, Neima D. Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson’s disease. Br J Ophthalmol 1978; 68: 885–9.
  • 24. Yenice O, Onal S, Midi I, ve ark. Visual field analysis in patients with Parkinson’s disease. Parkinsonism Relat Disord 2008; 14: 193-8.
  • 25. Armstrong RA. Visual signs and symptoms of Parkinson’s disease. Clin Exp Optom 2008; 91: 129–38. doi: 10.1111/j.1444- 0938.2007.00211.x.
  • 26. Ehinger B. Functional role of dopamine in retina. Progress in Retinal Reseach 1983; 2: 213-32.
  • 27. Denis P, Normdan J, Elena PP, et al. Physiological roles of dopamine and neuropeptides in the retina. Fundam Clin Pharmacol 1993; 7: 293-304.
  • 28. Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 1990; 31: 2473-5.
  • 29. Galetta KM, Calabresi PA, Frohman EM, et al. Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration. Neurotherapeutics 2011; 1: 117-32. doi: 10.1007/s13311-010-0005-1.
  • 30. Hajee M, March W, Lazzaro D, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127: 737–41. doi: 10.1001/archophthalmol.2009.106.
  • 31. Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004; 44: 2793–7.
  • 32. Altintas O, Iseri PK, Ozkan B, ve ark. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 2007; 116: 137–46.
  • 33. Palmowski-Wolfe AM, Perez MT, Behnke S, et al. Influence of dopamine deficiency in early Parkinson’s disease on the slow stimulation multifocal-ERG. Doc Ophthalmol 2006; 112: 209-15.
  • 34. Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-40.
  • 35. Yüksel N. Nörodejeneratif hastalık olarak glokom. Turkiye Klinikleri J Ophthalmol-Special Topics 2012; 5: 14-8.
  • 36. Koppula S, Kumar H, More VS, et al. Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson’s disease. Int J Mol Sci 2012; 13: 10608– 29. doi: 10.3390/ijms130810608.
There are 36 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Review Makaleler
Authors

Sevcan Balci This is me

Sevcan Yildiz Balcı This is me

Muhsin Eraslan This is me

Muhsin Eraslan This is me

Ahmet Temel This is me

Publication Date July 2, 2015
Published in Issue Year 2015 Volume: 28 Issue: 1

Cite

APA Balci, S., Balcı, S. Y., Eraslan, M., Eraslan, M., et al. (2015). Glokom, Parkinson hastalığı ve nörodejenerasyon. Marmara Medical Journal, 28(1), 8-12. https://doi.org/10.5472/MMJ.2015.03691.1
AMA Balci S, Balcı SY, Eraslan M, Eraslan M, Temel A. Glokom, Parkinson hastalığı ve nörodejenerasyon. Marmara Med J. August 2015;28(1):8-12. doi:10.5472/MMJ.2015.03691.1
Chicago Balci, Sevcan, Sevcan Yildiz Balcı, Muhsin Eraslan, Muhsin Eraslan, and Ahmet Temel. “Glokom, Parkinson hastalığı Ve nörodejenerasyon”. Marmara Medical Journal 28, no. 1 (August 2015): 8-12. https://doi.org/10.5472/MMJ.2015.03691.1.
EndNote Balci S, Balcı SY, Eraslan M, Eraslan M, Temel A (August 1, 2015) Glokom, Parkinson hastalığı ve nörodejenerasyon. Marmara Medical Journal 28 1 8–12.
IEEE S. Balci, S. Y. Balcı, M. Eraslan, M. Eraslan, and A. Temel, “Glokom, Parkinson hastalığı ve nörodejenerasyon”, Marmara Med J, vol. 28, no. 1, pp. 8–12, 2015, doi: 10.5472/MMJ.2015.03691.1.
ISNAD Balci, Sevcan et al. “Glokom, Parkinson hastalığı Ve nörodejenerasyon”. Marmara Medical Journal 28/1 (August 2015), 8-12. https://doi.org/10.5472/MMJ.2015.03691.1.
JAMA Balci S, Balcı SY, Eraslan M, Eraslan M, Temel A. Glokom, Parkinson hastalığı ve nörodejenerasyon. Marmara Med J. 2015;28:8–12.
MLA Balci, Sevcan et al. “Glokom, Parkinson hastalığı Ve nörodejenerasyon”. Marmara Medical Journal, vol. 28, no. 1, 2015, pp. 8-12, doi:10.5472/MMJ.2015.03691.1.
Vancouver Balci S, Balcı SY, Eraslan M, Eraslan M, Temel A. Glokom, Parkinson hastalığı ve nörodejenerasyon. Marmara Med J. 2015;28(1):8-12.