Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey
Year 2021,
Volume: 34 Issue: 2, 127 - 131, 31.05.2021
Objectives: The incidence of infections caused by carbapenem-resistant Enterobacteriaceae has increased worldwide. Limitations
in the development of new antimicrobial agents have led clinicians to reconsider the clinical efficiency of old antibiotics, such as
intravenous formulation of fosfomycin, in the treatment of multidrug-resistant Gram-negative bacterial infections. We investigated
the fosfomycin susceptibility of carbapenemase-producing Klebsiella pneumoniae strains isolated prior to the clinical use of the
intravenous formulation of fosfomycin in Turkey.
Materials and Methods: A total of the 155 K. pneumoniae isolates which previously characterized at the molecular level for their
carbapenemase were included in this study. The minimum inhibitory concentration of fosfomycin was determined by the agar
dilution method.
Results: Overall, 65.1% of the isolates were susceptible to fosfomycin. The MIC50 and MIC90 values were 32 and 256 mg/L, respectively.
According to our results, at least two-third of carbapenemase-positive K. pneumoniae are susceptible to fosfomycin.
Conclusions: Although, the susceptibility of fosfomycin, which has just been put into the clinical use of intravenous formulation in
Turkey, is not very high, it can be considered as an alternative
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios
PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae
and other Enterobacteriaceae: an evolving crisis of global
dimensions. Clin Microbiol Rev 2012; 25:682–707. doi:
10.1128/CMR.05035-11
Queenan AM, Bush K. Carbapenemases: the versatile betalactamases.
Clin Microbiol Rev 2007; 20(3):440–458. doi:
10.1128/CMR.00001-07
Walsh TR. Emerging carbapenemases: a global perspective.
Int J Antimicrob Agents 2010; 36 Suppl 3: 8–14. doi: 10.1016/
S0924-8579(10)70004-2
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections
caused by carbapenem-resistant Enterobacteriaceae: An
update on therapeutic options. Front Microbiol 2019; 10:80.
doi: 10.3389/fmicb.2019.00080
Raz R. Fosfomycin: an old-new antibiotic. Clin Microbiol
Infect 2012;18(1):4–7. doi: 10.1111/j.1469-0691.2011.03636.x
Grabein B, Graninger W, Rodríguez Baño J, et al. Intravenous
fosfomycin–back to the future. Systemic review and metaanalysis
of the clinical literature. Clin Microbiol Infect 2017;
23(6): 363–372. doi: 10.1016/j.cmi.2016.12.005
Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous
fosfomycin for the treatment of nosocomial infections caused
by carbapenem-resistant Klebsiella pneumoniae in critically ill
patients: a prospective evaluation. Clin Microbiol Infect 2010;
16(2):184–186. doi: 10.1111/j.1469-0691.2009.02921.x
European Committee on Antimicrobial Susceptibility Testing
(EUCAST): Clinical breakpoints version 9.0. In: European
Committee on Antimicrobial Susceptibility Testing. Vaxjo:
EUCAST 2019. Available from: http://www.eucast.org
Aktaş Z, Kayacan CB, Schneider I, et al. Carbapenem
hydrolyzing oxacillinase, OXA-48, persists in Klebsiella
pneumoniae in Istanbul, Turkey. Chemotherapy 2018;
54(2):101–106. doi: 10.1159/000118661.
Perry JD, Naqvi SH, Mirza IA, et al. Prevalence of faecal carriage
of Enterobacteriaceae with NDM-1 carbapenemase at military
hospitals in Pakistan, and evaluation of two chromogenic
media. J Antimicrob Chemother 2011; 66(10):2288–2294. doi:
10.1093/jac/dkr299
Pitout JD, Gregson DB, Poirel L, et al. Detection of
Pseudomonas aeruginosa producing metallo-beta-lactamases
in a large centralized laboratory. J Clin Microbiol 2005;
43(7):3129–35. doi: 10.1128/JCM.43.7.3129-3135.2005.
Cole JM, Schuetz AN, Hill CE, Nolte FS. Development and
evaluation of a real-time PCR assay for detection of Klebsiella
pneumoniae carbapenemase genes. J Clin Microbiol 2009;
47(2):322–326. doi: 10.1128/JCM.01550-08
Roussos N, Karageorgopoulos DE, Samonis G, Falagas
ME. Clinical significance of the pharmacokinetic and
pharmacodynamic characteristics of fosfomycin for
the treatment of patients with systemic infections. Int J
Antimicrob Agents 2009; 34(6):506–515. doi: 10.1016/j.
ijantimicag.2009.08.013
Evren E, Azap KO, Çolakoğlu Ş, Arslan H. In vitro
activity of fosfomycin in combination with imipenem,
meropenem, colistin and tigecycline against OXA 48-positive
Klebsiella pneumoniae strains. Diagn Microbiol Infect
Dis 2013;76(3):335-8. doi: 10.1016/j.diagmicrobio.2013.04.004
Yıldız SS, Kaşkatepe B, Şimşek H, Sarıgüzel FM. High rate of
colistin and fosfomycin resistance among carbapenemaseproducing
Enterobacteriaceae in Turkey. Acta Microbiol
Immunol Hung, 2019 Mar 1;66(1):103-112. doi:
10.1556/030.65.2018.042.
Livermore DM, Warner M, Mushtaq S, et al. What remains
against carbapenem-resistant Enterobacteriaceae? Evaluation
of chloramphenicol, ciprofloxacin, colistin, fosfomycin,
minocycline, nitrofurantoin, temocillin, and tigecycline.
Int J Antimicrob Agents 2011; 37:415–419. doi: 10.1016/j.
ijantimicag.2011.01.012.
Bielen L, Likić R, Erdeljić V, et al. Activity of fosfomycin
against nosocomial multiresistant bacterial pathogens from
Croatia: a multicentric study. Croat Med J 2018;59(2):56–64.
doi: 10.3325/cmj.2018.59.56
Kaase M, Szabados F, Anders A, Gatermann SG. Fosfomycin
susceptibility in carbapenem-resistant Enterobacteriaceae
from Germany. J Clin Microbiol 2014; 52:1893–1897. doi:
10.1128/JCM.03484-13
Camarlinghi G, Parisio EM, Antonelli A, et al. Discrepancies
in fosfomycin susceptibility testing of KPC-producing
Klebsiella pneumoniae with various commercial methods.
Diagn Microbiol Infect Dis 2019; 93(1):74–76. doi: 10.1016/j.
diagmicrobio.2018.07.014
Tuon FF, Rocha JL, Formighieri MS, et al. Fosfomycin
susceptibility of isolates with blaKPC-2 from Brazil. J Infect 2013;
67:247–249. doi: 10.1016/j.jinf.2013.04.017
Kopacz J, Mariano N, Colon-Urban R, et al. Identification
of extended-spectrum-beta-lactamase-positive Klebsiella
pneumoniae urinary tract isolates harboring KPC and CTX-M
beta-lactamases in nonhospitalized patients. Antimicrob
Agents Chemother 2013; 57:5166–5169. doi: 10.1128/
AAC.00043-13
Endimiani A, Patel G, Hujer KM, et al. In vitro activity of
fosfomycin against blaKPC-containing Klebsiella pneumoniae
isolates, including those nonsusceptible to tigecycline and/
or colistin. Antimicrob Agents Chemother 2010; 54:526–529.
doi: 10.1128/AAC.01235-09
Souli M, Galani I, Antoniadou A, et al. An outbreak of infection
due to beta-lactamase Klebsiella pneumoniae carbapenemase-
2-producing K. pneumoniae in a Greek university hospital:
molecular characterization, epidemiology, and outcomes. Clin
Infect Dis 2010; 50:364–373. doi: 10.1086/649865
Paño-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco
C, et al. Infections caused by OXA-48-producing Klebsiella
pneumoniae in a tertiary hospital in Spain in the setting of a
prolonged, hospital-wide outbreak. J Antimicrob Chemother
2013; 68:89–96. doi: 10.1093/jac/dks364
Choudhury S, Yeng JL, Krishnan PU. In vitro susceptibilities
of clinical isolates of carbapenemase-producing
Enterobacteriaceae to fosfomycin and tigecycline. Clin
Microbiol Infect 2015; 21(10): e75–6. doi: 10.1016/j.
cmi.2015.06.005
Karageorgopoulos DE, Miriagou V, Tzouvelekis LS, et al.
Emergence of resistance to fosfomycin used as adjunct therapy
in KPC Klebsiella pneumoniae bacteremia: report of three
cases. J Antimicrob Chemother 2012; 67(11):2777–2779. doi:
10.1093/jac/dks270.
Souli M, Galani I, Boukovalas S, et al. In-vitro interactions
of antimicrobial combinations with fosfomycin against
KPC-2 producing Klebsiella pneumoniae and protection of
resistance development. Antimicrobial Agents Chemother
2011;55(5):2395–2397. doi: 10.1128/AAC.01086-10
Karageorgopoulos DE, Wang R, Yu XH, Falagas ME.
Fosfomycin: evaluation of the published evidence on the
emergence of antimicrobial resistance in Gram-negative
pathogens. J Antimicrob Chemother 2012;67(2):255–268. doi:
10.1093/jac/dkr466.
Falagas ME, Kastoris AC, Karageorgopoulos DE Rafailidis
PI. Fosfomycin for the treatment of infections caused by
multidrug-resistant non-fermenting Gram-negative bacilli:
a systemic review of microbiological, animal and clinical
studies. Int J Antimicrob Agents 2009;34(2): 111–120. doi:
10.1016/j.ijantimicag.2009.03.009.
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios
PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae
and other Enterobacteriaceae: an evolving crisis of global
dimensions. Clin Microbiol Rev 2012; 25:682–707. doi:
10.1128/CMR.05035-11
Queenan AM, Bush K. Carbapenemases: the versatile betalactamases.
Clin Microbiol Rev 2007; 20(3):440–458. doi:
10.1128/CMR.00001-07
Walsh TR. Emerging carbapenemases: a global perspective.
Int J Antimicrob Agents 2010; 36 Suppl 3: 8–14. doi: 10.1016/
S0924-8579(10)70004-2
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections
caused by carbapenem-resistant Enterobacteriaceae: An
update on therapeutic options. Front Microbiol 2019; 10:80.
doi: 10.3389/fmicb.2019.00080
Raz R. Fosfomycin: an old-new antibiotic. Clin Microbiol
Infect 2012;18(1):4–7. doi: 10.1111/j.1469-0691.2011.03636.x
Grabein B, Graninger W, Rodríguez Baño J, et al. Intravenous
fosfomycin–back to the future. Systemic review and metaanalysis
of the clinical literature. Clin Microbiol Infect 2017;
23(6): 363–372. doi: 10.1016/j.cmi.2016.12.005
Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous
fosfomycin for the treatment of nosocomial infections caused
by carbapenem-resistant Klebsiella pneumoniae in critically ill
patients: a prospective evaluation. Clin Microbiol Infect 2010;
16(2):184–186. doi: 10.1111/j.1469-0691.2009.02921.x
European Committee on Antimicrobial Susceptibility Testing
(EUCAST): Clinical breakpoints version 9.0. In: European
Committee on Antimicrobial Susceptibility Testing. Vaxjo:
EUCAST 2019. Available from: http://www.eucast.org
Aktaş Z, Kayacan CB, Schneider I, et al. Carbapenem
hydrolyzing oxacillinase, OXA-48, persists in Klebsiella
pneumoniae in Istanbul, Turkey. Chemotherapy 2018;
54(2):101–106. doi: 10.1159/000118661.
Perry JD, Naqvi SH, Mirza IA, et al. Prevalence of faecal carriage
of Enterobacteriaceae with NDM-1 carbapenemase at military
hospitals in Pakistan, and evaluation of two chromogenic
media. J Antimicrob Chemother 2011; 66(10):2288–2294. doi:
10.1093/jac/dkr299
Pitout JD, Gregson DB, Poirel L, et al. Detection of
Pseudomonas aeruginosa producing metallo-beta-lactamases
in a large centralized laboratory. J Clin Microbiol 2005;
43(7):3129–35. doi: 10.1128/JCM.43.7.3129-3135.2005.
Cole JM, Schuetz AN, Hill CE, Nolte FS. Development and
evaluation of a real-time PCR assay for detection of Klebsiella
pneumoniae carbapenemase genes. J Clin Microbiol 2009;
47(2):322–326. doi: 10.1128/JCM.01550-08
Roussos N, Karageorgopoulos DE, Samonis G, Falagas
ME. Clinical significance of the pharmacokinetic and
pharmacodynamic characteristics of fosfomycin for
the treatment of patients with systemic infections. Int J
Antimicrob Agents 2009; 34(6):506–515. doi: 10.1016/j.
ijantimicag.2009.08.013
Evren E, Azap KO, Çolakoğlu Ş, Arslan H. In vitro
activity of fosfomycin in combination with imipenem,
meropenem, colistin and tigecycline against OXA 48-positive
Klebsiella pneumoniae strains. Diagn Microbiol Infect
Dis 2013;76(3):335-8. doi: 10.1016/j.diagmicrobio.2013.04.004
Yıldız SS, Kaşkatepe B, Şimşek H, Sarıgüzel FM. High rate of
colistin and fosfomycin resistance among carbapenemaseproducing
Enterobacteriaceae in Turkey. Acta Microbiol
Immunol Hung, 2019 Mar 1;66(1):103-112. doi:
10.1556/030.65.2018.042.
Livermore DM, Warner M, Mushtaq S, et al. What remains
against carbapenem-resistant Enterobacteriaceae? Evaluation
of chloramphenicol, ciprofloxacin, colistin, fosfomycin,
minocycline, nitrofurantoin, temocillin, and tigecycline.
Int J Antimicrob Agents 2011; 37:415–419. doi: 10.1016/j.
ijantimicag.2011.01.012.
Bielen L, Likić R, Erdeljić V, et al. Activity of fosfomycin
against nosocomial multiresistant bacterial pathogens from
Croatia: a multicentric study. Croat Med J 2018;59(2):56–64.
doi: 10.3325/cmj.2018.59.56
Kaase M, Szabados F, Anders A, Gatermann SG. Fosfomycin
susceptibility in carbapenem-resistant Enterobacteriaceae
from Germany. J Clin Microbiol 2014; 52:1893–1897. doi:
10.1128/JCM.03484-13
Camarlinghi G, Parisio EM, Antonelli A, et al. Discrepancies
in fosfomycin susceptibility testing of KPC-producing
Klebsiella pneumoniae with various commercial methods.
Diagn Microbiol Infect Dis 2019; 93(1):74–76. doi: 10.1016/j.
diagmicrobio.2018.07.014
Tuon FF, Rocha JL, Formighieri MS, et al. Fosfomycin
susceptibility of isolates with blaKPC-2 from Brazil. J Infect 2013;
67:247–249. doi: 10.1016/j.jinf.2013.04.017
Kopacz J, Mariano N, Colon-Urban R, et al. Identification
of extended-spectrum-beta-lactamase-positive Klebsiella
pneumoniae urinary tract isolates harboring KPC and CTX-M
beta-lactamases in nonhospitalized patients. Antimicrob
Agents Chemother 2013; 57:5166–5169. doi: 10.1128/
AAC.00043-13
Endimiani A, Patel G, Hujer KM, et al. In vitro activity of
fosfomycin against blaKPC-containing Klebsiella pneumoniae
isolates, including those nonsusceptible to tigecycline and/
or colistin. Antimicrob Agents Chemother 2010; 54:526–529.
doi: 10.1128/AAC.01235-09
Souli M, Galani I, Antoniadou A, et al. An outbreak of infection
due to beta-lactamase Klebsiella pneumoniae carbapenemase-
2-producing K. pneumoniae in a Greek university hospital:
molecular characterization, epidemiology, and outcomes. Clin
Infect Dis 2010; 50:364–373. doi: 10.1086/649865
Paño-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco
C, et al. Infections caused by OXA-48-producing Klebsiella
pneumoniae in a tertiary hospital in Spain in the setting of a
prolonged, hospital-wide outbreak. J Antimicrob Chemother
2013; 68:89–96. doi: 10.1093/jac/dks364
Choudhury S, Yeng JL, Krishnan PU. In vitro susceptibilities
of clinical isolates of carbapenemase-producing
Enterobacteriaceae to fosfomycin and tigecycline. Clin
Microbiol Infect 2015; 21(10): e75–6. doi: 10.1016/j.
cmi.2015.06.005
Karageorgopoulos DE, Miriagou V, Tzouvelekis LS, et al.
Emergence of resistance to fosfomycin used as adjunct therapy
in KPC Klebsiella pneumoniae bacteremia: report of three
cases. J Antimicrob Chemother 2012; 67(11):2777–2779. doi:
10.1093/jac/dks270.
Souli M, Galani I, Boukovalas S, et al. In-vitro interactions
of antimicrobial combinations with fosfomycin against
KPC-2 producing Klebsiella pneumoniae and protection of
resistance development. Antimicrobial Agents Chemother
2011;55(5):2395–2397. doi: 10.1128/AAC.01086-10
Karageorgopoulos DE, Wang R, Yu XH, Falagas ME.
Fosfomycin: evaluation of the published evidence on the
emergence of antimicrobial resistance in Gram-negative
pathogens. J Antimicrob Chemother 2012;67(2):255–268. doi:
10.1093/jac/dkr466.
Falagas ME, Kastoris AC, Karageorgopoulos DE Rafailidis
PI. Fosfomycin for the treatment of infections caused by
multidrug-resistant non-fermenting Gram-negative bacilli:
a systemic review of microbiological, animal and clinical
studies. Int J Antimicrob Agents 2009;34(2): 111–120. doi:
10.1016/j.ijantimicag.2009.03.009.
Altınkanat Gelmez, G., Can, B., Erturk Sengel, B., Korten, V., et al. (2021). Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey. Marmara Medical Journal, 34(2), 127-131. https://doi.org/10.5472/marumj.942784
AMA
Altınkanat Gelmez G, Can B, Erturk Sengel B, Korten V, Soyletır G. Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey. Marmara Med J. May 2021;34(2):127-131. doi:10.5472/marumj.942784
Chicago
Altınkanat Gelmez, Gülsen, Barış Can, Buket Erturk Sengel, Volkan Korten, and Güner Soyletır. “Determination of Fosfomycin Susceptibility in Carbapenemaseproducing K. Pneumoniae Strains Isolated Prior to Clinical Use of the Intravenous Formulation in Turkey”. Marmara Medical Journal 34, no. 2 (May 2021): 127-31. https://doi.org/10.5472/marumj.942784.
EndNote
Altınkanat Gelmez G, Can B, Erturk Sengel B, Korten V, Soyletır G (May 1, 2021) Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey. Marmara Medical Journal 34 2 127–131.
IEEE
G. Altınkanat Gelmez, B. Can, B. Erturk Sengel, V. Korten, and G. Soyletır, “Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey”, Marmara Med J, vol. 34, no. 2, pp. 127–131, 2021, doi: 10.5472/marumj.942784.
ISNAD
Altınkanat Gelmez, Gülsen et al. “Determination of Fosfomycin Susceptibility in Carbapenemaseproducing K. Pneumoniae Strains Isolated Prior to Clinical Use of the Intravenous Formulation in Turkey”. Marmara Medical Journal 34/2 (May 2021), 127-131. https://doi.org/10.5472/marumj.942784.
JAMA
Altınkanat Gelmez G, Can B, Erturk Sengel B, Korten V, Soyletır G. Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey. Marmara Med J. 2021;34:127–131.
MLA
Altınkanat Gelmez, Gülsen et al. “Determination of Fosfomycin Susceptibility in Carbapenemaseproducing K. Pneumoniae Strains Isolated Prior to Clinical Use of the Intravenous Formulation in Turkey”. Marmara Medical Journal, vol. 34, no. 2, 2021, pp. 127-31, doi:10.5472/marumj.942784.
Vancouver
Altınkanat Gelmez G, Can B, Erturk Sengel B, Korten V, Soyletır G. Determination of fosfomycin susceptibility in carbapenemaseproducing K. pneumoniae strains isolated prior to clinical use of the intravenous formulation in Turkey. Marmara Med J. 2021;34(2):127-31.