Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 3, 274 - 278, 27.10.2021
https://doi.org/10.5472/marumj.1009115

Abstract

References

  • [1] Cicardi M, Aberer W, Banerji A et al. HAWK under the patronage of EAACI (European Academy of Allergy and Clinical Immunology). Classification, diagnosis, and approach to treatment for angioedema: consensus report from the Hereditary Angioedema International Working Group. Allergy 2014;69:602-16. doi: 10.1111/all.12380.
  • [2] Bork K, Barnstedt SE, Koch P, Traupe H. Hereditary angioedema with normal C1-inhibitor activity in women. Lancet 2000;356(9225):213-7. doi: 10.1016/S0140- 6736(00)02483-1.
  • [3] Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 2006 May 19;343(4):1286-9. doi: 10.1016/j.bbrc.2006.03.092.
  • [4] Cichon S, Martin L, Hennies HC et al. Increased activity of coagulation factor XII (Hageman factor) causes hereditary angioedema type III. Am J Hum Genet 2006 Dec;79(6):1098- 104. doi: 10.1086/509899.
  • [5] Bodian DL, Vilboux T, Hauser NS. Genotype-first analysis of a generally healthy population cohort supports genetic testing for diagnosis of hereditary angioedema of unknown cause. Allergy Asthma Clin Immunol 2019; 16:15:32. doi: 10.1186/ s13223.019.0346-1.
  • [6] Hieter P, Boguski M. Functional genomics: it’s all how you read it. Science 1997; 24:278(5338):601-2. doi: 10.1126/ science.278.5338.601.
  • [7] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9.
  • [8] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754- 60. doi: 10.1093/bioinformatics/btp324
  • [9] Li H, Handsaker B, Wysoker A, et al. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 15:25:2078-9. doi: 10.1093/bioinformatics/btp352.
  • [10] Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43(1110):11.10.1-11.10.33. doi:10.1002/047.125.0953. bi1110s43.
  • [11] Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248-9. doi: 10.1038/nmeth0410-248.
  • [12] Sim NL, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012;40 (Web Server issue):W452-7. doi: 10.1093/nar/ gks539
  • [13] Tate JG, Bamford S, Jubb H, et al. COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
  • [14] Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide association studies. Semin Cancer Biol 2019;55:53-60. doi: 10.1016/j.semcancer.2018.04.008.
  • [15] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 8;47(D1):D607-D613. doi: 10.1093/nar/gky1131.
  • [16] Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1-13. doi: 10.1093/nar/gkn923.
  • [17] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. doi: 10.1038/nprot.2008.211
  • [18] The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019;47(D1):D330-D338. doi: 10.1093/nar/gky1055.
  • [19] Kajdácsi E, Jani PK, Csuka D, et al. J Clin Immunol 2016;36:160-70. doi: 10.1007/s10875.016.0239-8
  • [20] Cicardi M, Zuraw BL. Angioedema due to bradykinin dysregulation. J Allergy Clin Immunol Pract 2018;6:1132-41. doi: 10.1016/j.jaip.2018.04.022.
  • [21] Arcoleo F, Lo Pizzo M, Misiano G, et al. The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema. Clin Exp Med. 2018;18:355-361. doi:10.1007/s10238.018.0499-022.
  • [22] López JA, Andrews RK, Afshar-Kharghan V, et al. BernardSoulier syndrome. Blood 1998;91:4397-418. doi: 10.1182/ blood.V91.12.4397
  • [23] Peerschke EI, Ghebrehiwet B. The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 2007;212:333- 42. doi: 10.1016/j.imbio.2006.11.011.

Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE)

Year 2021, Volume: 34 Issue: 3, 274 - 278, 27.10.2021
https://doi.org/10.5472/marumj.1009115

Abstract

Objective: Hereditary angioedema ( HAE) with normal C1 inhibitor (HAE-nC1-INH), is a genetically complex, rare disease and
mutations in F12, ANGPT1, PLG, MYOF genes are found in some families with HAE-nC1-INH. However, often a specific mutation
cannot be identified and this type is called as hereditary angioedema of unknown cause (U-HAE). Our aim was to identify putative
causative genetic alterations and/or pathways by whole exome sequencing in patients with U-HAE.
Patients and Methods: Nine patients from 8 families between the ages of 3 to 63 years with U-HAE and 6 controls were enrolled for
the study and whole exome sequencing were performed.
Results: No significant difference was found between the case and control group for the a priori suspected set of genes. Variants in the
genes; RAMP2, IL6, GP1BA, C1QBP were significantly different between U-HAE and control group. Downstream functional analysis
found that blood coagulation pathways were enriched in these genes.
Conclusion: Proteins that are not involved in contact pathways may also play a role in U-HAE. These variants need to be replicated in
larger cohorts and studied at the functional level to verify our findings.

References

  • [1] Cicardi M, Aberer W, Banerji A et al. HAWK under the patronage of EAACI (European Academy of Allergy and Clinical Immunology). Classification, diagnosis, and approach to treatment for angioedema: consensus report from the Hereditary Angioedema International Working Group. Allergy 2014;69:602-16. doi: 10.1111/all.12380.
  • [2] Bork K, Barnstedt SE, Koch P, Traupe H. Hereditary angioedema with normal C1-inhibitor activity in women. Lancet 2000;356(9225):213-7. doi: 10.1016/S0140- 6736(00)02483-1.
  • [3] Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 2006 May 19;343(4):1286-9. doi: 10.1016/j.bbrc.2006.03.092.
  • [4] Cichon S, Martin L, Hennies HC et al. Increased activity of coagulation factor XII (Hageman factor) causes hereditary angioedema type III. Am J Hum Genet 2006 Dec;79(6):1098- 104. doi: 10.1086/509899.
  • [5] Bodian DL, Vilboux T, Hauser NS. Genotype-first analysis of a generally healthy population cohort supports genetic testing for diagnosis of hereditary angioedema of unknown cause. Allergy Asthma Clin Immunol 2019; 16:15:32. doi: 10.1186/ s13223.019.0346-1.
  • [6] Hieter P, Boguski M. Functional genomics: it’s all how you read it. Science 1997; 24:278(5338):601-2. doi: 10.1126/ science.278.5338.601.
  • [7] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9.
  • [8] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754- 60. doi: 10.1093/bioinformatics/btp324
  • [9] Li H, Handsaker B, Wysoker A, et al. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 15:25:2078-9. doi: 10.1093/bioinformatics/btp352.
  • [10] Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43(1110):11.10.1-11.10.33. doi:10.1002/047.125.0953. bi1110s43.
  • [11] Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248-9. doi: 10.1038/nmeth0410-248.
  • [12] Sim NL, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012;40 (Web Server issue):W452-7. doi: 10.1093/nar/ gks539
  • [13] Tate JG, Bamford S, Jubb H, et al. COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
  • [14] Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide association studies. Semin Cancer Biol 2019;55:53-60. doi: 10.1016/j.semcancer.2018.04.008.
  • [15] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 8;47(D1):D607-D613. doi: 10.1093/nar/gky1131.
  • [16] Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1-13. doi: 10.1093/nar/gkn923.
  • [17] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. doi: 10.1038/nprot.2008.211
  • [18] The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019;47(D1):D330-D338. doi: 10.1093/nar/gky1055.
  • [19] Kajdácsi E, Jani PK, Csuka D, et al. J Clin Immunol 2016;36:160-70. doi: 10.1007/s10875.016.0239-8
  • [20] Cicardi M, Zuraw BL. Angioedema due to bradykinin dysregulation. J Allergy Clin Immunol Pract 2018;6:1132-41. doi: 10.1016/j.jaip.2018.04.022.
  • [21] Arcoleo F, Lo Pizzo M, Misiano G, et al. The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema. Clin Exp Med. 2018;18:355-361. doi:10.1007/s10238.018.0499-022.
  • [22] López JA, Andrews RK, Afshar-Kharghan V, et al. BernardSoulier syndrome. Blood 1998;91:4397-418. doi: 10.1182/ blood.V91.12.4397
  • [23] Peerschke EI, Ghebrehiwet B. The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 2007;212:333- 42. doi: 10.1016/j.imbio.2006.11.011.
There are 23 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Hande Kaymakcalan This is me

Hande Alp This is me

Ahmet Okay Caglayan This is me

Okan Gulbahar This is me

Emine Nihal Gokmen This is me

Emrah Nıkerel This is me

Publication Date October 27, 2021
Published in Issue Year 2021 Volume: 34 Issue: 3

Cite

APA Kaymakcalan, H., Alp, H., Caglayan, A. O., Gulbahar, O., et al. (2021). Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE). Marmara Medical Journal, 34(3), 274-278. https://doi.org/10.5472/marumj.1009115
AMA Kaymakcalan H, Alp H, Caglayan AO, Gulbahar O, Gokmen EN, Nıkerel E. Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE). Marmara Med J. October 2021;34(3):274-278. doi:10.5472/marumj.1009115
Chicago Kaymakcalan, Hande, Hande Alp, Ahmet Okay Caglayan, Okan Gulbahar, Emine Nihal Gokmen, and Emrah Nıkerel. “Genetic Alterations and Pathways in Patients With Hereditary Angioedema of Unknown Cause (U-HAE)”. Marmara Medical Journal 34, no. 3 (October 2021): 274-78. https://doi.org/10.5472/marumj.1009115.
EndNote Kaymakcalan H, Alp H, Caglayan AO, Gulbahar O, Gokmen EN, Nıkerel E (October 1, 2021) Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE). Marmara Medical Journal 34 3 274–278.
IEEE H. Kaymakcalan, H. Alp, A. O. Caglayan, O. Gulbahar, E. N. Gokmen, and E. Nıkerel, “Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE)”, Marmara Med J, vol. 34, no. 3, pp. 274–278, 2021, doi: 10.5472/marumj.1009115.
ISNAD Kaymakcalan, Hande et al. “Genetic Alterations and Pathways in Patients With Hereditary Angioedema of Unknown Cause (U-HAE)”. Marmara Medical Journal 34/3 (October 2021), 274-278. https://doi.org/10.5472/marumj.1009115.
JAMA Kaymakcalan H, Alp H, Caglayan AO, Gulbahar O, Gokmen EN, Nıkerel E. Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE). Marmara Med J. 2021;34:274–278.
MLA Kaymakcalan, Hande et al. “Genetic Alterations and Pathways in Patients With Hereditary Angioedema of Unknown Cause (U-HAE)”. Marmara Medical Journal, vol. 34, no. 3, 2021, pp. 274-8, doi:10.5472/marumj.1009115.
Vancouver Kaymakcalan H, Alp H, Caglayan AO, Gulbahar O, Gokmen EN, Nıkerel E. Genetic alterations and pathways in patients with Hereditary Angioedema of Unknown Cause (U-HAE). Marmara Med J. 2021;34(3):274-8.