Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 3, 234 - 340, 27.10.2021
https://doi.org/10.5472/marumj.1012077

Abstract

References

  • [1] Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 2007; 1:131- 43. doi: 10.3389/neuro.01.1.1.010.2007.
  • [2] Yuste R. Dendritic spines. Cambridge, Massachusetts: MIT Press, 2010: 162.
  • [3] Herms J, Dorostkar MM. Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol 2016; 11:221- 50. doi: 10.1146/annurev-pathol-012.615.044216.
  • [4] Solis O, Limón DI, Flores-Hernández J, Flores G. Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson’s disease. Synapse 2007; 61:450-8. doi: 10.1002/syn.20381.
  • [5] Peters A, Kaiserman-Abramof IR. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 1970; 127:321-55. doi: 10.1002/ aja.100.127.0402.
  • [6] Spires TL, Grote HE, Garry S, et al. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 2004; 19:2799-2807. doi: 10.1111/j.0953-816X.2004.03374.x.
  • [7] Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature 2002; 420:812-6. doi: 10.1038/nature01276.
  • [8] Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R. L-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 2016; 26:4253-64. doi: 10.1093/cercor/bhw263.
  • [9] Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007; 17:381-6. doi: 10.1016/j.conb.2007.04.009.
  • [10] Comery TA, Stamoudis CX, Irwin SA, Greenough WT. Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiol Learn Mem 1996; 66:93- 96. doi: 10.1006/nlme.1996.0049.
  • [11] Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol 2017; 15:434-43. doi: 10.2174/1570159X14 6.661.61228122115.
  • [12] Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. doi: 10.1111/jpi.12360.
  • [13] Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 2009; 15:345- 57. doi: 10.1111/j.1755-5949.2009.00105.x.
  • [14] Pandi-Perumal SR, BaHammam AS, Brown GM, et al. . Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 2013; 23:267-300. doi: 10.1007/s12640.012.9337-4.
  • [15] Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR. Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 2005; 22:2805- 2816. doi: 10.1111/j.1460-9568.2005.04483.x.
  • [16] Ozdemir D, Uysal N, Gonenc S, et al. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 2005; 54:631-7. doi: 10.3390/ ijms19051539.
  • [17] Polimeni G, Esposito E, Bevelacqua V, Guarneri C, Cuzzocrea S. Role of melatonin supplementation in neurodegenerative disorders. Front Biosci (Landmark Ed) 2014; 19:429-446. doi: 10.2741/4217. PMID: 24389194.
  • [18] Hardeland R. Melatonin and inflammation-Story of a doubleedged blade. J Pineal Res 2018; 65:e12525. doi: 10.1111/ jpi.12525.
  • [19] Bicanic I, Hladnik A, Petanjek Z. A quantitative Golgi study of dendritic morphology in the mice striatal medium spiny neurons. Front Neuroanat 2017; 11:37. doi: 10.3389/ fnana.2017.00037.
  • [20] Tepper JM, Abercrombie ED, Bolam JP. Basal ganglia macrocircuits. Prog Brain Res 2007; 160:3-7. doi: 10.1016/ S0079-6123(06)60001-0.
  • [21] Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 2010; 30:2223-34. doi: 10.1523/JNEUROSCI.4870-09.2010.
  • [22] O’Callaghan C, Bertoux M, Hornberger M. Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 2014; 85:371-8. doi: 10.1136/jnnp-2012-304558.
  • [23] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. USA: Academic Press, 2007.
  • [24] Bicanic I, Hladnik A, Petanjek Z. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons. Front Neuroanat. 2017; 11:37. doi:10.3389/ fnana.2017.00037
  • [25] Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20. doi: 10.1016/j. mcn.2012.03.005.
  • [26] McClendon E, Chen K, Gong X, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 2014; 75:508-24. doi: 10.1002/ana.24100.
  • [27] Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47:33- 46. doi: 10.1016/j.neuropharm.2004.06.025.
  • [28] Villalba RM, Smith Y. Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 2011; 519:989-1005. doi: 10.1002/cne.22563.
  • [29] Walker RH, Moore C, Davies G, Dirling LB, Koch RJ, Meshul CK. Effects of subthalamic nucleus lesions and stimulation upon corticostriatal afferents in the 6-hydroxydopaminelesioned rat. PLoS One 2012; 7:e32919. doi: 10.1371/journal. pone.0032919.
  • [30] Soderstrom KE, O’Malley JA, Levine ND, Sortwell CE, Collier TJ, Steece-Collier K. Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur J Neurosci 2010; 31:478-90. doi: 10.1111/j.1460-9568.2010.07077.x.
  • [31] Mack JM, Schamne MG, Sampaio TB, et al. Melatoninergic system in Parkinson’s disease: from neuroprotection to the management of motor and nonmotor symptoms. Oxid Med Cell Longev 2016; 2016:3472032. doi: 10.1155/2016/3472032.
  • [32] Osier N, McGreevy E, Pham L, et al. Melatonin as a therapy for traumatic brain injury: A review of published evidence. Int J Mol Sci 2018; 19:1539. doi: 10.3390/ijms19051539.
  • [33] Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 2017; 74:3999-4014. doi: 10.1007/s00018.017.2614-x.
  • [34] Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. doi: 10.1111/jpi.12360.
  • [35] Saravanan KS, Sindhu KM, Mohanakumar KP. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 2007; 42:247-53. doi: 10.1111/j.1600-079X.2006.00412.x.
  • [36] Naskar A, Manivasagam T, Chakraborty J, et al. Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 2013; 55:304-12. doi:10.1111/ jpi.12076.
  • [37] Chidambaram SB, Rathipriya AG, Bolla SR, et al. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-93. doi: 10.1016/j.pnpbp.2019.01.005.
  • [38] Bello-Medina PC, Flores G, Quirarte GL, McGaugh JL, Prado Alcalá RA. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A. 2016;113:E6516-E6525. doi:10.1073/pnas.161.368.0113.
  • [39] Dumitriu D, Hao J, Hara Y, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 2010; 30:7507-7515. doi: 10.1523/JNEUROSCI.6410-09.2010.
  • [40] Krohmer RW, Jurkovic J. Neuronal plasticity in the forebrain of the male red-sided garter snake: Effect of season, low temperature dormancy, and hormonal status on dendritic spine density. Physiol Behav 2020; 215:112789. doi: 10.1016/j. physbeh.2019.112789.
  • [41] Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007;17:381-6. doi:10.1016/j.conb.2007.04.009.
  • [42] Bello-Medina PC, Flores G, Quirarte GL, McGaugh JL, Prado Alcalá RA. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A. 2016;113:E6516-E6525. doi:10.1073/pnas.161.368.0113.

The effects of melatonin on the striatum

Year 2021, Volume: 34 Issue: 3, 234 - 340, 27.10.2021
https://doi.org/10.5472/marumj.1012077

Abstract

Objective: Some of the neurological diseases cause morphologic changes in the striatal neurons. Medial forebrain bundle (MFB)
lesion is a commonly used method to produce a Parkinsonian model rat. Melatonin is a hormone which exerts a neuroprotective
effect on the neurons. The aim of this study is to investigate the effect of melatonin on the dendritic morphology of striatal medium
spiny neurons (MSNs) in rats with MFB lesion.
Materials and Methods: Twelve male Wistar albino rats were given saline injections into the MFB and divided into sedentary and
treatment groups. The treatment group was administered a 10 mg/kg dose of melatonin intraperitoneally for 30 days. The lesion
was confirmed histologically by Nissl staining. Golgi staining technique was applied to observe neuronal morphology. Neuronal
structures were analysed from three-dimensional images by Neurolucida (MBF Bioscience) software.
Results: The MFB lesion caused a reduction in the total dendritic length and in the number of dendritic endings. The melatonin
enhanced the number of dendritic endings compared to the sedentary group. The melatonin led to an increase in the total spine
density, spine densities of thin and mushroom types.
Conclusion: Melatonin improved the dendritic degeneration due to MFB lesion.

References

  • [1] Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 2007; 1:131- 43. doi: 10.3389/neuro.01.1.1.010.2007.
  • [2] Yuste R. Dendritic spines. Cambridge, Massachusetts: MIT Press, 2010: 162.
  • [3] Herms J, Dorostkar MM. Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol 2016; 11:221- 50. doi: 10.1146/annurev-pathol-012.615.044216.
  • [4] Solis O, Limón DI, Flores-Hernández J, Flores G. Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson’s disease. Synapse 2007; 61:450-8. doi: 10.1002/syn.20381.
  • [5] Peters A, Kaiserman-Abramof IR. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 1970; 127:321-55. doi: 10.1002/ aja.100.127.0402.
  • [6] Spires TL, Grote HE, Garry S, et al. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 2004; 19:2799-2807. doi: 10.1111/j.0953-816X.2004.03374.x.
  • [7] Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature 2002; 420:812-6. doi: 10.1038/nature01276.
  • [8] Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R. L-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 2016; 26:4253-64. doi: 10.1093/cercor/bhw263.
  • [9] Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007; 17:381-6. doi: 10.1016/j.conb.2007.04.009.
  • [10] Comery TA, Stamoudis CX, Irwin SA, Greenough WT. Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiol Learn Mem 1996; 66:93- 96. doi: 10.1006/nlme.1996.0049.
  • [11] Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol 2017; 15:434-43. doi: 10.2174/1570159X14 6.661.61228122115.
  • [12] Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. doi: 10.1111/jpi.12360.
  • [13] Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 2009; 15:345- 57. doi: 10.1111/j.1755-5949.2009.00105.x.
  • [14] Pandi-Perumal SR, BaHammam AS, Brown GM, et al. . Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 2013; 23:267-300. doi: 10.1007/s12640.012.9337-4.
  • [15] Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR. Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 2005; 22:2805- 2816. doi: 10.1111/j.1460-9568.2005.04483.x.
  • [16] Ozdemir D, Uysal N, Gonenc S, et al. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 2005; 54:631-7. doi: 10.3390/ ijms19051539.
  • [17] Polimeni G, Esposito E, Bevelacqua V, Guarneri C, Cuzzocrea S. Role of melatonin supplementation in neurodegenerative disorders. Front Biosci (Landmark Ed) 2014; 19:429-446. doi: 10.2741/4217. PMID: 24389194.
  • [18] Hardeland R. Melatonin and inflammation-Story of a doubleedged blade. J Pineal Res 2018; 65:e12525. doi: 10.1111/ jpi.12525.
  • [19] Bicanic I, Hladnik A, Petanjek Z. A quantitative Golgi study of dendritic morphology in the mice striatal medium spiny neurons. Front Neuroanat 2017; 11:37. doi: 10.3389/ fnana.2017.00037.
  • [20] Tepper JM, Abercrombie ED, Bolam JP. Basal ganglia macrocircuits. Prog Brain Res 2007; 160:3-7. doi: 10.1016/ S0079-6123(06)60001-0.
  • [21] Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 2010; 30:2223-34. doi: 10.1523/JNEUROSCI.4870-09.2010.
  • [22] O’Callaghan C, Bertoux M, Hornberger M. Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 2014; 85:371-8. doi: 10.1136/jnnp-2012-304558.
  • [23] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. USA: Academic Press, 2007.
  • [24] Bicanic I, Hladnik A, Petanjek Z. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons. Front Neuroanat. 2017; 11:37. doi:10.3389/ fnana.2017.00037
  • [25] Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20. doi: 10.1016/j. mcn.2012.03.005.
  • [26] McClendon E, Chen K, Gong X, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 2014; 75:508-24. doi: 10.1002/ana.24100.
  • [27] Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47:33- 46. doi: 10.1016/j.neuropharm.2004.06.025.
  • [28] Villalba RM, Smith Y. Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 2011; 519:989-1005. doi: 10.1002/cne.22563.
  • [29] Walker RH, Moore C, Davies G, Dirling LB, Koch RJ, Meshul CK. Effects of subthalamic nucleus lesions and stimulation upon corticostriatal afferents in the 6-hydroxydopaminelesioned rat. PLoS One 2012; 7:e32919. doi: 10.1371/journal. pone.0032919.
  • [30] Soderstrom KE, O’Malley JA, Levine ND, Sortwell CE, Collier TJ, Steece-Collier K. Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur J Neurosci 2010; 31:478-90. doi: 10.1111/j.1460-9568.2010.07077.x.
  • [31] Mack JM, Schamne MG, Sampaio TB, et al. Melatoninergic system in Parkinson’s disease: from neuroprotection to the management of motor and nonmotor symptoms. Oxid Med Cell Longev 2016; 2016:3472032. doi: 10.1155/2016/3472032.
  • [32] Osier N, McGreevy E, Pham L, et al. Melatonin as a therapy for traumatic brain injury: A review of published evidence. Int J Mol Sci 2018; 19:1539. doi: 10.3390/ijms19051539.
  • [33] Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 2017; 74:3999-4014. doi: 10.1007/s00018.017.2614-x.
  • [34] Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. doi: 10.1111/jpi.12360.
  • [35] Saravanan KS, Sindhu KM, Mohanakumar KP. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 2007; 42:247-53. doi: 10.1111/j.1600-079X.2006.00412.x.
  • [36] Naskar A, Manivasagam T, Chakraborty J, et al. Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 2013; 55:304-12. doi:10.1111/ jpi.12076.
  • [37] Chidambaram SB, Rathipriya AG, Bolla SR, et al. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-93. doi: 10.1016/j.pnpbp.2019.01.005.
  • [38] Bello-Medina PC, Flores G, Quirarte GL, McGaugh JL, Prado Alcalá RA. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A. 2016;113:E6516-E6525. doi:10.1073/pnas.161.368.0113.
  • [39] Dumitriu D, Hao J, Hara Y, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 2010; 30:7507-7515. doi: 10.1523/JNEUROSCI.6410-09.2010.
  • [40] Krohmer RW, Jurkovic J. Neuronal plasticity in the forebrain of the male red-sided garter snake: Effect of season, low temperature dormancy, and hormonal status on dendritic spine density. Physiol Behav 2020; 215:112789. doi: 10.1016/j. physbeh.2019.112789.
  • [41] Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007;17:381-6. doi:10.1016/j.conb.2007.04.009.
  • [42] Bello-Medina PC, Flores G, Quirarte GL, McGaugh JL, Prado Alcalá RA. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A. 2016;113:E6516-E6525. doi:10.1073/pnas.161.368.0113.
There are 42 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Sinem Gergın This is me

Ozlem Kırazlı This is me

Hatice Boracı This is me

Sercan Dogukan Yıldız This is me

Umit Suleyman Sehırlı This is me

Publication Date October 27, 2021
Published in Issue Year 2021 Volume: 34 Issue: 3

Cite

APA Gergın, S., Kırazlı, O., Boracı, H., Yıldız, S. D., et al. (2021). The effects of melatonin on the striatum. Marmara Medical Journal, 34(3), 234-340. https://doi.org/10.5472/marumj.1012077
AMA Gergın S, Kırazlı O, Boracı H, Yıldız SD, Sehırlı US. The effects of melatonin on the striatum. Marmara Med J. October 2021;34(3):234-340. doi:10.5472/marumj.1012077
Chicago Gergın, Sinem, Ozlem Kırazlı, Hatice Boracı, Sercan Dogukan Yıldız, and Umit Suleyman Sehırlı. “The Effects of Melatonin on the Striatum”. Marmara Medical Journal 34, no. 3 (October 2021): 234-340. https://doi.org/10.5472/marumj.1012077.
EndNote Gergın S, Kırazlı O, Boracı H, Yıldız SD, Sehırlı US (October 1, 2021) The effects of melatonin on the striatum. Marmara Medical Journal 34 3 234–340.
IEEE S. Gergın, O. Kırazlı, H. Boracı, S. D. Yıldız, and U. S. Sehırlı, “The effects of melatonin on the striatum”, Marmara Med J, vol. 34, no. 3, pp. 234–340, 2021, doi: 10.5472/marumj.1012077.
ISNAD Gergın, Sinem et al. “The Effects of Melatonin on the Striatum”. Marmara Medical Journal 34/3 (October 2021), 234-340. https://doi.org/10.5472/marumj.1012077.
JAMA Gergın S, Kırazlı O, Boracı H, Yıldız SD, Sehırlı US. The effects of melatonin on the striatum. Marmara Med J. 2021;34:234–340.
MLA Gergın, Sinem et al. “The Effects of Melatonin on the Striatum”. Marmara Medical Journal, vol. 34, no. 3, 2021, pp. 234-40, doi:10.5472/marumj.1012077.
Vancouver Gergın S, Kırazlı O, Boracı H, Yıldız SD, Sehırlı US. The effects of melatonin on the striatum. Marmara Med J. 2021;34(3):234-340.