Research Article
BibTex RIS Cite
Year 2022, Volume: 35 Issue: 2, 139 - 142, 30.05.2022
https://doi.org/10.5472/marumj.1120587

Abstract

References

  • [1] Besler M, Eigenmann P, Schwartz RH. Allergen data collection: cow’s milk (Bos domesticus) update. Internet Symp Food Allergens 2002;4:19-106.
  • [2] Golinelli LP, Del Aguila EM, Paschoalin VF, Silva JT, Conte- Junior C. Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci 2014;2:3:1035.
  • [3] Bu G, Luo Y, Chen F, Liu K, and Zhu T. Milk processing as a tool to reduce cow’s milk allergenicity: a mini-review. Dairy Sci Technol 2013;9:211-23. doi: 10.1007/s13594.013.0113-x
  • [4] Kolot F. Immobilized cells for solvent production. Process Biochem 1984;19:1:7-13.
  • [5] Audet P, Paquin C, Lacroix C. Immobilized growing lactic acid bacteria with κ-carrageenan—locust bean gum gel. Appl Microbiol Biotechnol 1988;29:1:11-8. doi: 10.1007/ BF00258344
  • [6] Klein J, Stock J, Vorlop K-D. Pore size and properties of spherical Ca-alginate biocatalysts. Eur J Appl Microbiol Biotechnol 1983;18:2:86-91. doi: 10.1007/BF00500829
  • [7] Tosa T, Sato T, Mori Tet al. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioengineering 1979;21:10:1697-709. doi: 10.1002/ bit.260211002
  • [8] Takata I, Tosa T, Chibata I. Screening of matrix suitable for immobilization of microbial cells. J Solid-Phase Biochem 1977;2:3:225-36. doi: 10.1007/BF02996744
  • [9] Luong J. Cell immobilization in κ‐carrageenan for ethanol production. Biotechnol Bioeng 1985;27:12:1652-61. doi: 10.1002/bit.260271205
  • [10] Gòdia F, Casas C, Castellano B, Solà C. Immobilized cells: behaviour of carrageenan entrapped yeast during continuous ethanol fermentation. Appl Microbiol Biotechnol 1987;26:4:342-6. doi: 10.1007/BF00256666
  • [11] Roy D, Goulet J, Le Duy A. Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 1987;70:3:506- 513. doi: 10.3168/jds.S0022-0302(87)80035-8
  • [12] Steenson LR, Klaenhammer TR, Swaisgood HE. Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 1987;70:6:1121-7. doi: 10.3168/jds.S0022-0302(87)80121-2
  • [13] Prevost H, Divies C, Rousseau E. Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol Lett 1985;7:4:247-52. doi: 10.1007/BF01042371
  • [14] Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K. Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol Lett 2007;269:1:160-9. doi: 10.1111/j.1574-6968.2007.00631.x
  • [15] Nilsson K, Birnbaum S, Flygare S, et al. A general method for the immobilization of cells with preserved viability. Eur Appl Microbiol Biotechnol 1983;17:6:319-26. doi: doi.org/10.1007/ BF00499497
  • [16] Lacroix C, Paquin C, Arnaud J-P. Batch fermentation with entrapped growing cells of Lactobacillus case. Appl Microbiol Biotechnol 1990;32:4:403-8. doi: 10.1007/BF00903773
  • [17] Sampson HA. Update on food allergy. J Allergy Clin Immunol 2004;113:5:805-19. doi: 10.1016/j.jaci.2004.03.014
  • [18] Hefle SL, Nordlee JA, Taylor SL. Allergenic foods. Crit Rev Food Sci Nutr 1996;36:S1:69-89. doi: 10.1080/104.083.99609527760
  • [19] Yao M, Xu Q, Luo Y, Shi J, Li Z. Study on reducing antigenic response and IgE‐binding inhibitions of four milk proteins of Lactobacillus casei 1134. J Sci Food Agric 2015;95:6:1303-12. doi: 10.1002/jsfa.6823
  • [20] Zohar‐Perez C, Chet I, and Nussinovitch A. Unexpected distribution of immobilized microorganisms within alginate beads. Biotechnol Bioengin 2004;88:5:671-4. doi: 10.1002/ bit.20284
  • [21] Garbayo I, Vilchez C, Vega J, Nava-Saucedo J, Barbotin J. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Biotechnol Lett 2004;26:23:1825-7.

Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus

Year 2022, Volume: 35 Issue: 2, 139 - 142, 30.05.2022
https://doi.org/10.5472/marumj.1120587

Abstract

Objective: In this study, we aimed to compare the efficiency of different immobilization media to facilitate breakdown of whey
proteins by Streptococcus thermophilus (S. thermophilus).

Materials and Methods: S. thermophilus was isolated from yoghurt. High-protein whey powder was present in fermentation media
and two-phase dispersion technique was used for immobilization of S. thermophilus in agar, agarose and κ-carrageenan. Total protein
after fermentation of whey proteins with S. thermophilus in different media was measured. We have also performed sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis to observe changes in individual whey proteins after fermentation
in different media.

Results: Total protein concentration showed a significant decrease at the end of 24 hours of fermentation in all media. SDS-PAGE
results showed that the amount of both α-lactalbumin and β-lactoglobulin were reduced in all immobilization media compared to
control. The effect of κ-carrageenan was considerably higher compared to other media.

Conclusion: Our results showed that immobilization in κ-carrageenan increased the breakdown of whey proteins by S. thermophilus
and can be used to increase fermentation efficiency.

References

  • [1] Besler M, Eigenmann P, Schwartz RH. Allergen data collection: cow’s milk (Bos domesticus) update. Internet Symp Food Allergens 2002;4:19-106.
  • [2] Golinelli LP, Del Aguila EM, Paschoalin VF, Silva JT, Conte- Junior C. Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci 2014;2:3:1035.
  • [3] Bu G, Luo Y, Chen F, Liu K, and Zhu T. Milk processing as a tool to reduce cow’s milk allergenicity: a mini-review. Dairy Sci Technol 2013;9:211-23. doi: 10.1007/s13594.013.0113-x
  • [4] Kolot F. Immobilized cells for solvent production. Process Biochem 1984;19:1:7-13.
  • [5] Audet P, Paquin C, Lacroix C. Immobilized growing lactic acid bacteria with κ-carrageenan—locust bean gum gel. Appl Microbiol Biotechnol 1988;29:1:11-8. doi: 10.1007/ BF00258344
  • [6] Klein J, Stock J, Vorlop K-D. Pore size and properties of spherical Ca-alginate biocatalysts. Eur J Appl Microbiol Biotechnol 1983;18:2:86-91. doi: 10.1007/BF00500829
  • [7] Tosa T, Sato T, Mori Tet al. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioengineering 1979;21:10:1697-709. doi: 10.1002/ bit.260211002
  • [8] Takata I, Tosa T, Chibata I. Screening of matrix suitable for immobilization of microbial cells. J Solid-Phase Biochem 1977;2:3:225-36. doi: 10.1007/BF02996744
  • [9] Luong J. Cell immobilization in κ‐carrageenan for ethanol production. Biotechnol Bioeng 1985;27:12:1652-61. doi: 10.1002/bit.260271205
  • [10] Gòdia F, Casas C, Castellano B, Solà C. Immobilized cells: behaviour of carrageenan entrapped yeast during continuous ethanol fermentation. Appl Microbiol Biotechnol 1987;26:4:342-6. doi: 10.1007/BF00256666
  • [11] Roy D, Goulet J, Le Duy A. Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 1987;70:3:506- 513. doi: 10.3168/jds.S0022-0302(87)80035-8
  • [12] Steenson LR, Klaenhammer TR, Swaisgood HE. Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 1987;70:6:1121-7. doi: 10.3168/jds.S0022-0302(87)80121-2
  • [13] Prevost H, Divies C, Rousseau E. Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol Lett 1985;7:4:247-52. doi: 10.1007/BF01042371
  • [14] Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K. Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol Lett 2007;269:1:160-9. doi: 10.1111/j.1574-6968.2007.00631.x
  • [15] Nilsson K, Birnbaum S, Flygare S, et al. A general method for the immobilization of cells with preserved viability. Eur Appl Microbiol Biotechnol 1983;17:6:319-26. doi: doi.org/10.1007/ BF00499497
  • [16] Lacroix C, Paquin C, Arnaud J-P. Batch fermentation with entrapped growing cells of Lactobacillus case. Appl Microbiol Biotechnol 1990;32:4:403-8. doi: 10.1007/BF00903773
  • [17] Sampson HA. Update on food allergy. J Allergy Clin Immunol 2004;113:5:805-19. doi: 10.1016/j.jaci.2004.03.014
  • [18] Hefle SL, Nordlee JA, Taylor SL. Allergenic foods. Crit Rev Food Sci Nutr 1996;36:S1:69-89. doi: 10.1080/104.083.99609527760
  • [19] Yao M, Xu Q, Luo Y, Shi J, Li Z. Study on reducing antigenic response and IgE‐binding inhibitions of four milk proteins of Lactobacillus casei 1134. J Sci Food Agric 2015;95:6:1303-12. doi: 10.1002/jsfa.6823
  • [20] Zohar‐Perez C, Chet I, and Nussinovitch A. Unexpected distribution of immobilized microorganisms within alginate beads. Biotechnol Bioengin 2004;88:5:671-4. doi: 10.1002/ bit.20284
  • [21] Garbayo I, Vilchez C, Vega J, Nava-Saucedo J, Barbotin J. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Biotechnol Lett 2004;26:23:1825-7.
There are 21 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Fatıma Zehra Safak This is me 0000-0002-6968-7280

Gokhan Bıcım This is me 0000-0002-5128-1717

Ayse Mine Yılmaz This is me 0000-0003-0802-523X

Burak Aksu This is me 0000-0002-3439-9158

A. Suha Yalcın This is me 0000-0002-3527-631X

Publication Date May 30, 2022
Published in Issue Year 2022 Volume: 35 Issue: 2

Cite

APA Safak, F. Z., Bıcım, G., Yılmaz, A. M., Aksu, B., et al. (2022). Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus. Marmara Medical Journal, 35(2), 139-142. https://doi.org/10.5472/marumj.1120587
AMA Safak FZ, Bıcım G, Yılmaz AM, Aksu B, Yalcın AS. Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus. Marmara Med J. May 2022;35(2):139-142. doi:10.5472/marumj.1120587
Chicago Safak, Fatıma Zehra, Gokhan Bıcım, Ayse Mine Yılmaz, Burak Aksu, and A. Suha Yalcın. “Effect of Different Immobilization Media on Breakdown of Whey Proteins by Streptococcus Thermophilus”. Marmara Medical Journal 35, no. 2 (May 2022): 139-42. https://doi.org/10.5472/marumj.1120587.
EndNote Safak FZ, Bıcım G, Yılmaz AM, Aksu B, Yalcın AS (May 1, 2022) Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus. Marmara Medical Journal 35 2 139–142.
IEEE F. Z. Safak, G. Bıcım, A. M. Yılmaz, B. Aksu, and A. S. Yalcın, “Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus”, Marmara Med J, vol. 35, no. 2, pp. 139–142, 2022, doi: 10.5472/marumj.1120587.
ISNAD Safak, Fatıma Zehra et al. “Effect of Different Immobilization Media on Breakdown of Whey Proteins by Streptococcus Thermophilus”. Marmara Medical Journal 35/2 (May 2022), 139-142. https://doi.org/10.5472/marumj.1120587.
JAMA Safak FZ, Bıcım G, Yılmaz AM, Aksu B, Yalcın AS. Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus. Marmara Med J. 2022;35:139–142.
MLA Safak, Fatıma Zehra et al. “Effect of Different Immobilization Media on Breakdown of Whey Proteins by Streptococcus Thermophilus”. Marmara Medical Journal, vol. 35, no. 2, 2022, pp. 139-42, doi:10.5472/marumj.1120587.
Vancouver Safak FZ, Bıcım G, Yılmaz AM, Aksu B, Yalcın AS. Effect of different immobilization media on breakdown of whey proteins by Streptococcus thermophilus. Marmara Med J. 2022;35(2):139-42.