Review
BibTex RIS Cite

Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications

Year 2025, Volume: 38 Issue: 1, 1 - 8, 29.01.2025

Abstract

Diabetes mellitus (DM) is one of the leading non-communicable metabolic disorders. Over time it may lead to the development of
serious complications. Glutamine fructose-6-phosphate amidotransferase (GFAT), is the first and rate-limiting enzyme that plays an
important role in regulating the hexosamine biosynthesis pathway (HBP). During hyperglycemia, excess glucose that enters the cell
gets diverted into the HBP by this GFAT enzyme. Recent studies have suggested that the overexpression of GFAT is associated with
insulin resistance and diabetic complications and it is mainly seen in patients with diabetes.
Using various sources, an extensive literature survey was conducted to determine the complex role of GFAT enzyme and
their involvement in the modification of various proteins and transcription factors, contributing to the development of diabetes
complications.
The overexpression of GFAT during hyperglycemia increases the flux through the HBP, resulting in insulin resistance, and various
vascular complications such as nephropathy, neuropathy, retinopathy, delayed wound healing, and cardiovascular complications.
Inhibiting GFAT emerges as a potential therapeutic strategy to counteract hexosamine pathway-induced insulin resistance and
alleviate vascular complications in diabetes. The multifaceted role of GFAT in diabetic complications underscores its significance as a
therapeutic target for future advancements in diabetes management.

References

  • Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020;21:6275. doi:10.3390/ijms21176275.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32 Suppl 1:S62-67. doi: 10.2337/dc09-S062.
  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843. doi: 10.1016/j.diabres.2019.107843.
  • Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008;88:1322-35. doi: 10.2522/ptj.20080008.
  • Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018;107:306-28. doi: 10.1016/j.biopha.2018.07.157.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058-70. doi: 10.1161/ CIRCRESAHA.110.223545.
  • The Hexosamine Biosynthesis Pathway: Regulation and Function – PubMed n.d. https://pubmed.ncbi.nlm.nih. gov/37107691/ (accessed December 14, 2023).
  • McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes 1996;45:1003-9. doi:10.2337/diab.45.8.1003.
  • Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int 2000;58:S13-8. doi:10.1046/j.1523-1755.2000.07703.x.
  • Buse MG. Hexosamines, insulin resistance and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 2006;290:E1-8. doi: 10.1152/ ajpendo.00329.2005.
  • Andreozzi F, D’Alessandris C, Federici M, et al. Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta-cells. Endocrinology 2004;145:2845-57. doi: 10.1210/ en.2003-0939.
  • Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 2000;97:12222-6. doi: 10.1073/ pnas.97.22.12222.
  • Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility – PubMed n.d. https://pubmed. ncbi.nlm.nih.gov/9111324/ (accessed December 14, 2023).
  • Roos MD, Su K, Baker JR, Kudlow JE. O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol Cell Biol 1997;17:6472-80. doi: 10.1128/MCB.17.11.6472.
  • Walgren JLE, Vincent TS, Schey KL, Buse MG. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 2003;284:E424-434. doi: 10.1152/ajpendo.00382.2002.
  • Yang X, Su K, Roos MD, Chang Q, Paterson AJ, Kudlow JE. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A 2001;98:6611-6. doi: 10.1073/pnas.111099998.
  • Lamarre-Vincent N, Hsieh-Wilson LC. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 2003;125:6612-3. doi: 10.1021/ ja028200t.
  • Gao Y, Miyazaki J, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 betacells. Arch Biochem Biophys 2003;415:155-63. doi: 10.1016/ s0003-9861(03)00234-0.
  • Kamemura K, Hayes BK, Comer FI, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/ phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 2002;277:19229-35. doi: 10.1074/jbc.M201729200.
  • Gewinner C, Hart G, Zachara N, Cole R, Beisenherz-Huss C, Groner B. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J Biol Chem 2004;279:3563-72. doi: 10.1074/jbc. M306449200.
  • Oliveira IA, Allonso D, Fernandes TVA, Lucena DMS, Ventura GT, Dias WB, et al. Enzymatic and structural properties of human glutamine:fructose-6-phosphate amidotransferase 2 (hGFAT2). J Biol Chem 2021;296:100180. doi: 10.1074/jbc. RA120.015189.
  • Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I. cDNA cloning and mapping of a novel subtype of glutamine:fructose- 6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics 1999;57:227-34. doi: 10.1006/geno.1999.5785.
  • Nabeebaccus AA, Verma S, Zoccarato A, et al. Cardiomyocyte protein O-GlcNAcylation is regulated by GFAT1 not GFAT2. Biochem Biophys Res Commun 2021;583:121-7. doi: 10.1016/j.bbrc.2021.10.056.
  • Niimi M, Ogawara T, Yamashita T, et al. Identification of GFAT1-L, a novel splice variant of human glutamine: fructose- 6-phosphate amidotransferase (GFAT1) that is expressed abundantly in skeletal muscle. J Hum Genet 2001;46:566-71. doi: 10.1007/s100.380.170022.
  • Ghosh S, Blumenthal HJ, Davidson E, Roseman S. Glucosamine Metabolism: V. ENZYMATIC SYNTHESIS OF GLUCOSAMINE 6-PHOSPHATE. J Biol Chem 1960;235:1265-73. doi: 10.1016/S0021-9258(18)69397-4.
  • Denisot MA, Le Goffic F, Badet B. Glucosamine-6-phosphate synthase from Escherichia coli yields two proteins upon limited proteolysis: identification of the glutamine amidohydrolase and 2R ketose/aldose isomerase-bearing domains based on their biochemical properties. Arch Biochem Biophys 1991;288:225-30. doi: 10.1016/0003-9861(91)90188-o.
  • Mouilleron S, Badet-Denisot M-A, Golinelli-Pimpaneau B. Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J Biol Chem 2006;281:4404-12. doi: 10.1074/jbc.M511689200.
  • Kornfeld R. Studies on L-glutamine D-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem 1967;242:3135-41.
  • Zhou J, Huynh QK, Hoffman RT, et al. Regulation of glutamine:fructose-6-phosphate amidotransferase by cAMPdependent protein kinase. Diabetes 1998;47:1836-40. doi: 10.2337/diabetes.47.12.1836.
  • Eguchi S, Oshiro N, Miyamoto T, et al. AMP-activated protein kinase phosphorylates glutamine : fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells 2009;14:179-89. doi: 10.1111/j.1365- 2443.2008.01260.x.
  • Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 2020;11:687. doi: 10.1038/s41467.020.14524-5.
  • Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021;12:2176. doi: 10.1038/s41467.021.22320-y.
  • Brownlee M. The Pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005;54:1615-25. doi: 10.2337/ diabetes.54.6.1615.
  • Pang L, Lian X, Liu H, et al. Understanding diabetic neuropathy: focus on oxidative stress. Oxidative Med Cell Longev 2020;2020:9524635.
  • Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int. 2015;2015:515042. doi: 10.1155/2015/515042. .
  • Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M. Glutamine fructose-6- phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 2007 ;40:952-7.
  • Freeman AM, Acevedo LA, Pennings N. Insulin resistance. StatPearls, Treasure Island (FL): StatPearls Publishing; 2023.
  • Hebert LF, Daniels MC, Zhou J, et al. Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 1996;98:930-6. doi: 10.1172/JCI118876.
  • Veerababu G, Tang J, Hoffman RT, et al. Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 2000;49:2070-8. doi: 10.2337/diabetes.49.12.2070.
  • Tang J, Neidigh JL, Cooksey RC, McClain DA. Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance. Diabetes 2000;49:1492-9. doi: 10.2337/ diabetes.49.9.1492.
  • Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/ AKT kinase-mediated insulin signaling by O-Linked beta- N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010;285:5204-11. doi: 10.1074/jbc.M109.077818.
  • Patti ME, Virkamäki A, Landaker EJ, Kahn CR, Yki-Järvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 1999;48:1562-71. doi: 10.2337/diabetes.48.8.1562.
  • Ball LE, Berkaw MN, Buse MG. Identification of the major site of O-linked beta-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Mol Cell Proteomics 2006;5:313-23. doi: 10.1074/mcp.M500314-MCP200.
  • Ma J, Hart GW. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev Proteomics 2013;10:365- 80. doi: 10.1586/14789.450.2013.820536.
  • de Jesus TJ, Tomalka JA, Centore JT, et al. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021;31:812-26. doi: 10.1093/glycob/cwab001.
  • Hepatic glucose sensing via the CREB coactivator CRTC2 – PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/18323454/ (accessed December 14, 2023).
  • Hazel M, Cooksey RC, Jones D, et al. Activation of the hexosamine Signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance. Endocrinology 2004;145:2118-28. doi: 10.1210/ en.2003-0812.
  • Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 2001;276:31099-104. doi: 10.1074/jbc.M104115200.
  • Chen YQ, Su M, Walia RR, Hao Q, Covington JW, Vaughan DE. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 1998;273:8225-31. doi: 10.1074/ jbc.273.14.8225.
  • James LR, Fantus IG, Goldberg H, Ly H, Scholey JW. Overexpression of GFAT activates PAI-1 promoter in mesangial cells. Am J Physiol Renal Physiol 2000;279:F718- 727. doi: 10.1152/ajprenal.2000.279.4.F718.
  • Weigert C, Brodbeck K, Lehmann R, Häring HU, Schleicher ED. Overexpression of glutamine:fructose-6-phosphateamidotransferase induces transforming growth factor-beta1 synthesis in NIH-3T3 fibroblasts. FEBS Lett 2001;488:95-9. doi: 10.1016/s0014-5793(00)02395-4.
  • Weigert C, Friess U, Brodbeck K, Häring HU, Schleicher ED. Glutamine:fructose-6-phosphate aminotransferase enzyme activity is necessary for the induction of TGF-beta1 and fibronectin expression in mesangial cells. Diabetologia 2003;46:852-5. doi: 10.1007/s00125.003.1122-8.
  • Semba RD, Huang H, Lutty GA, Van Eyk JE, Hart GW. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy. Proteomics Clin Appl 2014;8:218-31. doi: 10.1002/prca.201300076.
  • Kyriakides TR, MacLauchlan S. The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J Cell Commun Signal 2009;3:215-25. doi: 10.1007/ s12079.009.0077-z.
  • Kunkemoeller B, Bancroft T, Xing H, et al. Elevated thrombospondin 2 contributes to delayed wound healing in diabetes. Diabetes 2019;68:2016-23. doi: 10.2337/db18-1001.
There are 55 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Reviews
Authors

Ishwarya Obilineni This is me 0000-0003-2659-7493

Vadivelan Ramachandran 0000-0001-7927-4554

Harshini Magesh 0009-0001-8557-0197

Publication Date January 29, 2025
Submission Date December 18, 2023
Acceptance Date August 15, 2024
Published in Issue Year 2025 Volume: 38 Issue: 1

Cite

APA Obilineni, I., Ramachandran, V., & Magesh, H. (2025). Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications. Marmara Medical Journal, 38(1), 1-8.
AMA Obilineni I, Ramachandran V, Magesh H. Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications. Marmara Med J. January 2025;38(1):1-8.
Chicago Obilineni, Ishwarya, Vadivelan Ramachandran, and Harshini Magesh. “Targeting GFAT for Diabetes Management: A Therapeutic Approach to Alleviate Hexosamine Pathway-Induced Complications”. Marmara Medical Journal 38, no. 1 (January 2025): 1-8.
EndNote Obilineni I, Ramachandran V, Magesh H (January 1, 2025) Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications. Marmara Medical Journal 38 1 1–8.
IEEE I. Obilineni, V. Ramachandran, and H. Magesh, “Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications”, Marmara Med J, vol. 38, no. 1, pp. 1–8, 2025.
ISNAD Obilineni, Ishwarya et al. “Targeting GFAT for Diabetes Management: A Therapeutic Approach to Alleviate Hexosamine Pathway-Induced Complications”. Marmara Medical Journal 38/1 (January 2025), 1-8.
JAMA Obilineni I, Ramachandran V, Magesh H. Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications. Marmara Med J. 2025;38:1–8.
MLA Obilineni, Ishwarya et al. “Targeting GFAT for Diabetes Management: A Therapeutic Approach to Alleviate Hexosamine Pathway-Induced Complications”. Marmara Medical Journal, vol. 38, no. 1, 2025, pp. 1-8.
Vancouver Obilineni I, Ramachandran V, Magesh H. Targeting GFAT for diabetes management: a therapeutic approach to alleviate hexosamine pathway-induced complications. Marmara Med J. 2025;38(1):1-8.