Research Article
BibTex RIS Cite

Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data

Year 2025, Volume: 38 Issue: 3, 252 - 264, 10.10.2025
https://doi.org/10.5472/marumj.1800324

Abstract

Objective: The main symptom of ischemic heart disease (IHD) is chest pain and diabetic patients are likely to not perceive chest pain
due to neuropathy. Therefore, the prediction of IHD in patients with diabetes mellitus is crucial. In this study, we aimed to predict
IHD in patients with diabetes mellitus using various machine learning techniques. Additionally, we aimed to interpret the machine
learning model.
Materials and Methods: We used eXtreme Gradient Boosting (XGBoost), logistic regression, Multi-Layer Perceptron (MLP), random
forest, decision tree and K-Nearest Neighbors (KNN) algorithms to predict IHD in patients with diabetes mellitus. Additionally, we
used the SHapley Additive exPlanations (SHAP) method to interpret our machine learning model.
Results: According to performance analysis, the XGBoost model had a superior performance with 0.814 area under the curve (AUC)
on the training set and 0.795 AUC on the test set. The Brier score of the XGBoost model was 0.153. SHAP analysis results showed that
the presence of hypertension has the highest contribution to the presence of IHD in patients with diabetes mellitus.
Conclusion: Machine learning has the potential to provide decision support to clinicians in the identification of IHD in patients with
diabetes mellitus.

References

  • Arroyave F, Montaño D, Lizcano F. Diabetes mellitus is a chronic disease that can benefit from therapy with induced pluripotent stem cells. Int J Mol Sci 2020;21:8685. doi: 10.3390/ijms21228685.
  • Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep 2024;7:e2004. doi:10.1002/ hsr2.2004
  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Patil S, Rojulpote C, Amanullah A. Primary Aldosteronism and Ischemic Heart Disease. Front Cardiovasc Med 2022;9:882330. doi:10.3389/fcvm.2022.882330
  • Yalim Z, Dogan N, Yalim S. Mortality Trends from Ischemic Heart Disease in Turkey: 2009-2019. Turk Kardiyol Dern Ars 2022;50:348-55. doi:10.5543/tkda.2022.21297
  • Elosua R, Sayols-Baixeras S. The genetics of ischemic heart disease: from current knowledge to clinical implications. Rev Esp Cardiol (Engl Ed) 2017;70:754-62. doi:10.1016/j. rec.2017.02.046
  • Shi H, Xia Y, Cheng Y, et al. Global burden of ischaemic heart disease from 2022 to 2050: projections of incidence, prevalence, deaths, and disability-adjusted life years. Eur Heart J Qual Care Clin Outcomes 2024: 23;11:355-66.. doi:10.1093/ ehjqcco/qcae049
  • Severino P, D’Amato A, Netti L, et al. Diabetes mellitus and ischemic heart disease: The role of ion channels. Int J Mol Sci 2018;19:802. doi:10.3390/ijms19030802
  • Nilsson S, Scheike M, Engblom D, et al. Chest pain and ischaemic heart disease in primary care. Br J Gen Pract 2003;53:378-82.
  • Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019;5:42. doi:10.1038/ s41572.019.0097-9
  • Khafaji HA, Suwaidi JM. Atypical presentation of acute and chronic coronary artery disease in diabetics. World J Cardiol 2014;6:802-13. doi:10.4330/wjc.v6.i8.802
  • Manistamara H, Sella YO, Apriliawan S, Lukitasari M, Rohman MS. Chest pain symptoms differences between diabetes mellitus and non-diabetes mellitus patients with acute coronary syndrome: A pilot study. J Public Health Res 2021;10:2186. doi:10.4081/jphr.2021.2186
  • Fan R, Zhang N, Yang L, Ke J, Zhao D, Cui Q. AI-based prediction for the risk of coronary heart disease among patients with type 2 diabetes mellitus. Sci Rep 2020;10:14457. doi:10.1038/s41598.020.71321-2
  • Ma CY, Luo YM, Zhang TY, et al. Predicting coronary heart disease in Chinese diabetics using machine learning. Comput Biol Med 2024;169:107952. doi:10.1016/j. compbiomed.2024.107952
  • Hossain ME, Uddin S, Khan A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Syst Appl 2021;164:113918. doi:10.1016/j.eswa.2020.113918
  • Sang H, Lee H, Lee M, et al. Prediction model for cardiovascular disease in patients with diabetes using machine learning derived and validated in two independent Korean cohorts. Sci Rep 2024;14:14966. doi:10.1038/s41598.024.63798-y
  • Nabrdalik K, Kwiendacz H, Drozdz K, et al. Machine learning predicts cardiovascular events in patients with diabetes: The Silesia Diabetes-Heart Project. Curr Probl Cardiol 2023;48:101694. doi:10.1016/j.cpcardiol.2023.101694
  • Verges B. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis 2024;394:117158. doi:10.1016/j.atherosclerosis.2023.06.005
  • Gulkesen KH, Ulgu MM, Mutlu B, et al. Machine learning for prediction of glycemic control in diabetes mellitus. 2022. Mendeley Data. doi:10.17632/rr4rzzrjfc.2
  • Johnston R, Jones K, Manley D. Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, 2018;52:1957-76. doi:10.1007/s11135.017.0584-6
  • Wang R, Zhang J, Shan B, He M, Xu J. XGBoost machine learning algorithm for prediction of outcome in aneurysmal subarachnoid hemorrhage. Neuropsychiatr Dis Treat 2022;18:659-67. doi:10.2147/NDT.S349956
  • Wang L, Wang X, Chen A, Jin X, Che H. Prediction of type 2 diabetes risk and its effect evaluation based on the XGBoost model. Healthcare (Basel) 2020;8:247. doi:10.3390/ healthcare8030247
  • Valsdóttir V, Jónsdóttir MK, Magnúsdóttir BB, et al. Comparative study of machine learning methods for modeling associations between risk factors and future dementia cases. GeroScience 2024;46:737-50. doi:10.1007/s11357.023.01040-9
  • Chang W, Liu Y, Xiao Y, et al. A Machine-Learning-Based Prediction Method for hypertension outcomes based on medical data. Diagnostics (Basel) 2019;9:178. doi:10.3390/ diagnostics9040178
  • Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 2019;19:281. doi:10.1186/s12911.019.1004-8
  • Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. Classification and prediction of diabetes disease using machine learning paradigm. Health Inf Sci Syst 2020;8:7. doi:10.1007/s13755.019.0095-z
  • Chan KY, Abu-Salih B, Qaddoura R, et al. Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing 2023;545:126327. doi:10.1016/j.neucom.2023.126327
  • Nuryunarsih D, Herawati L, Badi’ah A, Donsu JDT, Okatiranti. Predicting changes in systolic and diastolic blood pressure of hypertensive patients in Indonesia using machine learning. Curr Hypertens Rep 2023;25:377-83. doi:10.1007/ s11906.023.01261-5
  • Yang Y, Xu L, Sun L, Zhang P, Farid SS. Machine learning application in personalised lung cancer recurrence and survivability prediction. Comput Struct Biotechnol J 2022;20:1811-20. doi:10.1016/j.csbj.2022.03.035
  • Ali MM, Paul BK, Ahmed K, Bui FM, Quinn JMW, Moni MA. Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Comput Biol Med 2021;136:104672. doi:10.1016/j. compbiomed.2021.104672
  • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010;21:128- 38. doi:10.1097/EDE.0b013e3181c30fb2
  • Shirwaikar RD, Acharya UD, Makkithaya K, M S, Srivastava S, Lewis UL. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Artif Intell Med 2019;98:59-76. doi:10.1016/j.artmed.2019.07.008
  • Damaskos C, Garmpis N, Kollia P, et al. Assessing cardiovascular risk in patients with diabetes: An update. Curr Cardiol Rev 2020;16:266-74. doi:10.2174/1573403X156.661.91111123622
  • Liu T, Krentz A, Lu L, Curcin V. Machine learning based prediction models for cardiovascular disease risk using electronic health records data: systematic review and metaanalysis. Eur Heart J Digit Health 2025;6:7-22. doi:10.1093/ ehjdh/ztae080
  • Špinar J. Hypertension and ischemic heart disease. Cor et Vasa 2012;54:e433-e438. doi:10.1016/j.crvasa.2012.11.002
  • Kokubo Y, Iwashima Y. Higher blood pressure as a risk factor for diseases other than stroke and ischemic heart disease. Hypertension 2015;66:254-9. doi:10.1161/ Hypertensionaha.115.03480
  • Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001;37:1053-9. doi:10.1161/01.hyp.37.4.1053
  • Gheisari F, Emami M, Raeisi Shahraki H, Samipour S, Nematollahi P. The role of gender in the importance of risk factors for coronary artery disease. Cardiol Res Pract 2020;2020:6527820. doi:10.1155/2020/6527820
  • Rodgers JL, Jones J, Bolleddu SI, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis 2019;6. doi:10.3390/jcdd6020019
  • Hayashi T, Kawashima S, Itoh H, et al. Low HDL Cholesterol Is Associated With the Risk of Stroke in Elderly Diabetic Individuals Changes in the risk for atherosclerotic diseases at various ages. Diabetes Care 2009;32:1221-3. doi:10.2337/ dc08-1677
  • Aguilar-Palacio I, Rabanaque MJ, Maldonado L, et al. New Male Users of Lipid-Lowering Drugs for Primary Prevention of Cardiovascular Disease: The Impact of Treatment Persistence on Morbimortality. A Longitudinal Study. Int J Environ Res Public Health 2020;17:7653. doi:10.3390/ijerph17207653
  • Gao QN, Tan JS, Fan LY, Wang XQ, Hua L, Cai J. Causal associations between disorders of lipoprotein metabolism and ten cardiovascular diseases. Front Cell Dev Biol 2022;10:1023006. doi:10.3389/fcell.2022.102.3006
  • Buddeke J, Bots ML, van Dis I, et al. Comorbidity in patients with cardiovascular disease in primary care: a cohort study with routine healthcare data. Br J Gen Pract 2019;69:e398-e406. doi:10.3399/bjgp19X702725
  • Matjuda EN, Engwa GA, Anye SNC, Nkeh-Chungag BN, Goswami N. Cardiovascular risk factors and their relationship with vascular dysfunction in South African Children of African Ancestry. J Clin Med 2021;10:354. doi:10.3390/ jcm10020354
  • Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright E. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev 2020;41:733-55. doi:10.1210/endrev/ bnaa015
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol 2019;26:25-32. doi:10.1177/204.748.7319878371
  • Doumat G, Daher D, Itani M, Abdouni L, El Asmar K, Assaf G. The effect of polypharmacy on healthcare services utilization in older adults with comorbidities: a retrospective cohort study. BMC Prim Care 2023;24:120. doi:10.1186/ s12875.023.02070-0
  • Seyiti Z, Yang L, Kasimujiang A, Dejite T, Shan XF, Gao XM. Predictive value of serum creatinine and total bilirubin for long-term death in patients with ischemic heart disease: A cohort study. PLoS One 2023;18:e0294335. doi:10.1371/ journal.pone.0294335
  • Sun X, Chen L, Zheng L. A Mendelian randomization study to assess the genetic liability of gastroesophageal reflux disease for cardiovascular diseases and risk factors. Hum Mol Genet 2022;31:4275-85. doi:10.1093/hmg/ddac162

Year 2025, Volume: 38 Issue: 3, 252 - 264, 10.10.2025
https://doi.org/10.5472/marumj.1800324

Abstract

References

  • Arroyave F, Montaño D, Lizcano F. Diabetes mellitus is a chronic disease that can benefit from therapy with induced pluripotent stem cells. Int J Mol Sci 2020;21:8685. doi: 10.3390/ijms21228685.
  • Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep 2024;7:e2004. doi:10.1002/ hsr2.2004
  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Patil S, Rojulpote C, Amanullah A. Primary Aldosteronism and Ischemic Heart Disease. Front Cardiovasc Med 2022;9:882330. doi:10.3389/fcvm.2022.882330
  • Yalim Z, Dogan N, Yalim S. Mortality Trends from Ischemic Heart Disease in Turkey: 2009-2019. Turk Kardiyol Dern Ars 2022;50:348-55. doi:10.5543/tkda.2022.21297
  • Elosua R, Sayols-Baixeras S. The genetics of ischemic heart disease: from current knowledge to clinical implications. Rev Esp Cardiol (Engl Ed) 2017;70:754-62. doi:10.1016/j. rec.2017.02.046
  • Shi H, Xia Y, Cheng Y, et al. Global burden of ischaemic heart disease from 2022 to 2050: projections of incidence, prevalence, deaths, and disability-adjusted life years. Eur Heart J Qual Care Clin Outcomes 2024: 23;11:355-66.. doi:10.1093/ ehjqcco/qcae049
  • Severino P, D’Amato A, Netti L, et al. Diabetes mellitus and ischemic heart disease: The role of ion channels. Int J Mol Sci 2018;19:802. doi:10.3390/ijms19030802
  • Nilsson S, Scheike M, Engblom D, et al. Chest pain and ischaemic heart disease in primary care. Br J Gen Pract 2003;53:378-82.
  • Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019;5:42. doi:10.1038/ s41572.019.0097-9
  • Khafaji HA, Suwaidi JM. Atypical presentation of acute and chronic coronary artery disease in diabetics. World J Cardiol 2014;6:802-13. doi:10.4330/wjc.v6.i8.802
  • Manistamara H, Sella YO, Apriliawan S, Lukitasari M, Rohman MS. Chest pain symptoms differences between diabetes mellitus and non-diabetes mellitus patients with acute coronary syndrome: A pilot study. J Public Health Res 2021;10:2186. doi:10.4081/jphr.2021.2186
  • Fan R, Zhang N, Yang L, Ke J, Zhao D, Cui Q. AI-based prediction for the risk of coronary heart disease among patients with type 2 diabetes mellitus. Sci Rep 2020;10:14457. doi:10.1038/s41598.020.71321-2
  • Ma CY, Luo YM, Zhang TY, et al. Predicting coronary heart disease in Chinese diabetics using machine learning. Comput Biol Med 2024;169:107952. doi:10.1016/j. compbiomed.2024.107952
  • Hossain ME, Uddin S, Khan A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Syst Appl 2021;164:113918. doi:10.1016/j.eswa.2020.113918
  • Sang H, Lee H, Lee M, et al. Prediction model for cardiovascular disease in patients with diabetes using machine learning derived and validated in two independent Korean cohorts. Sci Rep 2024;14:14966. doi:10.1038/s41598.024.63798-y
  • Nabrdalik K, Kwiendacz H, Drozdz K, et al. Machine learning predicts cardiovascular events in patients with diabetes: The Silesia Diabetes-Heart Project. Curr Probl Cardiol 2023;48:101694. doi:10.1016/j.cpcardiol.2023.101694
  • Verges B. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis 2024;394:117158. doi:10.1016/j.atherosclerosis.2023.06.005
  • Gulkesen KH, Ulgu MM, Mutlu B, et al. Machine learning for prediction of glycemic control in diabetes mellitus. 2022. Mendeley Data. doi:10.17632/rr4rzzrjfc.2
  • Johnston R, Jones K, Manley D. Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, 2018;52:1957-76. doi:10.1007/s11135.017.0584-6
  • Wang R, Zhang J, Shan B, He M, Xu J. XGBoost machine learning algorithm for prediction of outcome in aneurysmal subarachnoid hemorrhage. Neuropsychiatr Dis Treat 2022;18:659-67. doi:10.2147/NDT.S349956
  • Wang L, Wang X, Chen A, Jin X, Che H. Prediction of type 2 diabetes risk and its effect evaluation based on the XGBoost model. Healthcare (Basel) 2020;8:247. doi:10.3390/ healthcare8030247
  • Valsdóttir V, Jónsdóttir MK, Magnúsdóttir BB, et al. Comparative study of machine learning methods for modeling associations between risk factors and future dementia cases. GeroScience 2024;46:737-50. doi:10.1007/s11357.023.01040-9
  • Chang W, Liu Y, Xiao Y, et al. A Machine-Learning-Based Prediction Method for hypertension outcomes based on medical data. Diagnostics (Basel) 2019;9:178. doi:10.3390/ diagnostics9040178
  • Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 2019;19:281. doi:10.1186/s12911.019.1004-8
  • Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. Classification and prediction of diabetes disease using machine learning paradigm. Health Inf Sci Syst 2020;8:7. doi:10.1007/s13755.019.0095-z
  • Chan KY, Abu-Salih B, Qaddoura R, et al. Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing 2023;545:126327. doi:10.1016/j.neucom.2023.126327
  • Nuryunarsih D, Herawati L, Badi’ah A, Donsu JDT, Okatiranti. Predicting changes in systolic and diastolic blood pressure of hypertensive patients in Indonesia using machine learning. Curr Hypertens Rep 2023;25:377-83. doi:10.1007/ s11906.023.01261-5
  • Yang Y, Xu L, Sun L, Zhang P, Farid SS. Machine learning application in personalised lung cancer recurrence and survivability prediction. Comput Struct Biotechnol J 2022;20:1811-20. doi:10.1016/j.csbj.2022.03.035
  • Ali MM, Paul BK, Ahmed K, Bui FM, Quinn JMW, Moni MA. Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Comput Biol Med 2021;136:104672. doi:10.1016/j. compbiomed.2021.104672
  • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010;21:128- 38. doi:10.1097/EDE.0b013e3181c30fb2
  • Shirwaikar RD, Acharya UD, Makkithaya K, M S, Srivastava S, Lewis UL. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Artif Intell Med 2019;98:59-76. doi:10.1016/j.artmed.2019.07.008
  • Damaskos C, Garmpis N, Kollia P, et al. Assessing cardiovascular risk in patients with diabetes: An update. Curr Cardiol Rev 2020;16:266-74. doi:10.2174/1573403X156.661.91111123622
  • Liu T, Krentz A, Lu L, Curcin V. Machine learning based prediction models for cardiovascular disease risk using electronic health records data: systematic review and metaanalysis. Eur Heart J Digit Health 2025;6:7-22. doi:10.1093/ ehjdh/ztae080
  • Špinar J. Hypertension and ischemic heart disease. Cor et Vasa 2012;54:e433-e438. doi:10.1016/j.crvasa.2012.11.002
  • Kokubo Y, Iwashima Y. Higher blood pressure as a risk factor for diseases other than stroke and ischemic heart disease. Hypertension 2015;66:254-9. doi:10.1161/ Hypertensionaha.115.03480
  • Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001;37:1053-9. doi:10.1161/01.hyp.37.4.1053
  • Gheisari F, Emami M, Raeisi Shahraki H, Samipour S, Nematollahi P. The role of gender in the importance of risk factors for coronary artery disease. Cardiol Res Pract 2020;2020:6527820. doi:10.1155/2020/6527820
  • Rodgers JL, Jones J, Bolleddu SI, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis 2019;6. doi:10.3390/jcdd6020019
  • Hayashi T, Kawashima S, Itoh H, et al. Low HDL Cholesterol Is Associated With the Risk of Stroke in Elderly Diabetic Individuals Changes in the risk for atherosclerotic diseases at various ages. Diabetes Care 2009;32:1221-3. doi:10.2337/ dc08-1677
  • Aguilar-Palacio I, Rabanaque MJ, Maldonado L, et al. New Male Users of Lipid-Lowering Drugs for Primary Prevention of Cardiovascular Disease: The Impact of Treatment Persistence on Morbimortality. A Longitudinal Study. Int J Environ Res Public Health 2020;17:7653. doi:10.3390/ijerph17207653
  • Gao QN, Tan JS, Fan LY, Wang XQ, Hua L, Cai J. Causal associations between disorders of lipoprotein metabolism and ten cardiovascular diseases. Front Cell Dev Biol 2022;10:1023006. doi:10.3389/fcell.2022.102.3006
  • Buddeke J, Bots ML, van Dis I, et al. Comorbidity in patients with cardiovascular disease in primary care: a cohort study with routine healthcare data. Br J Gen Pract 2019;69:e398-e406. doi:10.3399/bjgp19X702725
  • Matjuda EN, Engwa GA, Anye SNC, Nkeh-Chungag BN, Goswami N. Cardiovascular risk factors and their relationship with vascular dysfunction in South African Children of African Ancestry. J Clin Med 2021;10:354. doi:10.3390/ jcm10020354
  • Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright E. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev 2020;41:733-55. doi:10.1210/endrev/ bnaa015
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol 2019;26:25-32. doi:10.1177/204.748.7319878371
  • Doumat G, Daher D, Itani M, Abdouni L, El Asmar K, Assaf G. The effect of polypharmacy on healthcare services utilization in older adults with comorbidities: a retrospective cohort study. BMC Prim Care 2023;24:120. doi:10.1186/ s12875.023.02070-0
  • Seyiti Z, Yang L, Kasimujiang A, Dejite T, Shan XF, Gao XM. Predictive value of serum creatinine and total bilirubin for long-term death in patients with ischemic heart disease: A cohort study. PLoS One 2023;18:e0294335. doi:10.1371/ journal.pone.0294335
  • Sun X, Chen L, Zheng L. A Mendelian randomization study to assess the genetic liability of gastroesophageal reflux disease for cardiovascular diseases and risk factors. Hum Mol Genet 2022;31:4275-85. doi:10.1093/hmg/ddac162
There are 49 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Original Research
Authors

Nevruz İlhanlı 0000-0002-4777-4025

Salih Özçobanoğlu 0000-0003-4573-9928

Kemal Hakan Gülkesen 0000-0002-2477-2481

Publication Date October 10, 2025
Submission Date December 20, 2024
Acceptance Date May 25, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA İlhanlı, N., Özçobanoğlu, S., & Gülkesen, K. H. (2025). Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data. Marmara Medical Journal, 38(3), 252-264. https://doi.org/10.5472/marumj.1800324
AMA İlhanlı N, Özçobanoğlu S, Gülkesen KH. Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data. Marmara Med J. October 2025;38(3):252-264. doi:10.5472/marumj.1800324
Chicago İlhanlı, Nevruz, Salih Özçobanoğlu, and Kemal Hakan Gülkesen. “Prediction of Ischemic Heart Disease in Patients With Diabetes Mellitus: Machine Learning Study on Population Data”. Marmara Medical Journal 38, no. 3 (October 2025): 252-64. https://doi.org/10.5472/marumj.1800324.
EndNote İlhanlı N, Özçobanoğlu S, Gülkesen KH (October 1, 2025) Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data. Marmara Medical Journal 38 3 252–264.
IEEE N. İlhanlı, S. Özçobanoğlu, and K. H. Gülkesen, “Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data”, Marmara Med J, vol. 38, no. 3, pp. 252–264, 2025, doi: 10.5472/marumj.1800324.
ISNAD İlhanlı, Nevruz et al. “Prediction of Ischemic Heart Disease in Patients With Diabetes Mellitus: Machine Learning Study on Population Data”. Marmara Medical Journal 38/3 (October2025), 252-264. https://doi.org/10.5472/marumj.1800324.
JAMA İlhanlı N, Özçobanoğlu S, Gülkesen KH. Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data. Marmara Med J. 2025;38:252–264.
MLA İlhanlı, Nevruz et al. “Prediction of Ischemic Heart Disease in Patients With Diabetes Mellitus: Machine Learning Study on Population Data”. Marmara Medical Journal, vol. 38, no. 3, 2025, pp. 252-64, doi:10.5472/marumj.1800324.
Vancouver İlhanlı N, Özçobanoğlu S, Gülkesen KH. Prediction of ischemic heart disease in patients with diabetes mellitus: Machine learning study on population data. Marmara Med J. 2025;38(3):252-64.