BibTex RIS Cite

Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler

Year 2013, Volume: 17 Issue: 2, 93 - 103, 24.10.2014

Abstract

Bu makale, antioksidan aktivite ölçmek için kullanılan başlıca spektrofotometrik yöntemler
hakkında bilgi vermektedir. İdeal olarak, antioksidan aktivite hem in vitro hem de in
vivo yöntemlerle tayin edilmelidir. Fakat in vivo çalışmaların yüksek maliyeti nedeniyle çoğu
ürün in vitro yöntemlerle değerlendirilir. Reaksiyon mekanizmalarına göre antioksidan kapasite
tayinleri hidrojen transferine dayanan reaksiyonlar (HAT) ve tek elektron transferine
dayanan reaksiyonlar (SET) olmak üzere iki gruba ayrılır. HAT mekanizmasına dayanan başlıca
tayin yöntemleri oksijen radikal absorbsiyon kapasitesi yöntemi (ORAC), toplam radikal
tuzaklayıcı antioksidan parametre yöntemi (TRAP) ve karotenoid (krosin) ağartma yöntemidir.
SET mekanizmasına dayanan başlıca tayin yöntemleri Folin-Ciocalteu reaktifi (FCR) yöntemi,
Troloks (6-hidroksi-2,5,7,8-tetrametilkroman-2-karboksilik asit) eşdeğeri antioksidan
kapasite yöntemi (TEAC), demir (III) iyonu indirgeyici antioksidan güç yöntemi (FRAP),
2,2-difenil-1-pikrilhidrazil (DPPH) radikal süpürme kapasitesi yöntemi ve Cu(II)’nin oksidan
olarak kullanıldığı toplam antioksidan potansiyel yöntemi (CUPRAC)’dir.

References

  • Cao GH, Alessio HM, Cutler RG. Oxygen-Radical Ab- sorbency Capacity Assay for Antioxidants. Free Radic Bio Med 1993; 14:303-11.
  • Niki E. Free-Radical Initiators as Source of Water-Solu- ble or Lipid-Soluble Peroxyl Radicals. Method Enzymol 1990; 186:100-8.
  • Huang DJ, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and validation of oxygen rad- ical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the sol- ubility enhancer. J Agr Food Chem 2002; 50:1815-21.
  • Cao G, Prior RL. Measurement of oxygen radical absorb- ance capacity in biological samples. Methods Enzymol 1999;299:50-62.
  • Huang DJ, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling sys- tem coupled with a microplate flourescence reader in 96- well format. J Agr Food Chem 2002; 50:4437-44.
  • Prior RL, Hoang H, Gu LW, Wu XL, Bacchiocca M, How- ard L, Hampsch-Woodill M, Huang DJ, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capac- ity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agr Food Chem 2003; 51:3273-9.
  • Wayner DD, Burton GW, Ingold KU, Locke S. Quanti- tative Measurement of the Total, Peroxyl Radical-Trap- ping Antioxidant Capability of Human-Blood Plasma by Controlled Peroxidation - the Important Contribution Made by Plasma-Proteins. Febs Lett 1985; 187:33-7.
  • Wayner DDM, Burton GW, Ingold KU, Barclay LR, Locke SJ. The Relative Contributions of Vitamin-E, Urate, Ascorbate and Proteins to the Total Peroxyl Rad- ical-Trapping Antioxidant Activity of Human-Blood Plasma. Biochim Biophys Acta 1987; 924:408-19.
  • Delange RJ, Glazer AN. Phycoerythrin Fluorescence- Based Assay for Peroxy-Radicals - a Screen for Biologi- cally Relevant Protective Agents. Anal Biochem 1989; 177:300-6.
  • Valkonen M, Kuusi T. Spectrophotometric assay for total peroxyl radical-trapping antioxidant potential in human serum. J Lipid Res 1997; 38:823-33.
  • Hammes E, Hoffmann A, Plieth C, Hansen UP. Light-in- duced decrease in DCF fluorescence of wheat leaves in the presence of salicyl hydroxamate. Protoplasma 2005; 227:11-5.
  • Burda S, Oleszek W. Antioxidant and antiradical activi- ties of flavonoids. J Agr Food Chem 2001; 49:2774-9.
  • Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperox- ides: A possible link between diet and atherosclerosis. Free Radical Bio Med 1998; 25: 250-2.
  • Huang D, Ou B, Prior RL. The chemistry behind antioxi- dant capacity assays. J Agric Food Chem 2005;53:1841-56.
  • Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F. Analysis of plasma antioxidant capacity by competition kinetics. Free Radical Bio Med 1998; 24:1228-34.
  • Ordoudi SA, Tsimidou MZ. Crocin bleaching assay step by step: Observations and suggestions for an alternative validated protocol. J Agr Food Chem 2006; 54:1663-71.
  • Bowry VW, Ingold KU. The unexpected role of vitamin E (alpha-tocopherol) in the peroxidation of human low- density lipoprotein. Accounts Chem Res 1999; 32:27-34.
  • Lussignoli S, Fraccaroli M, Andrioli G, Brocco G, Bel- lavite P. A microplate-based colorimetric assay of the to- tal peroxyl radical trapping capability of human plasma. Anal Biochem 1999; 269:38-44.
  • Vinson JA, Su XH, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: Fruits. J Agr Food Chem 2001; 49:5315-21.
  • Wang MF, Simon JE, Aviles IF, He K, Zheng QY, Tad- mor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agr Food Chem 2003; 51:601-8.
  • Maranz S, Wiesman Z, Garti N. Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agr Food Chem 2003; 51:6268-73.
  • Cai R, Hettiarachchy NS, Jalaluddin A. High-perfor- mance liquid chromatography determination of phe- nolic constituents in 17 varieties of cowpeas. J Agr Food Chem 2003; 51:1623-7.
  • Jayasinghe C, Gotoh N, Aoki T, Wada S. Phenolics com- position and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agr Food Chem 2003; 51:4442-9.
  • Stratil P, Klejdus B, Kuban V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables - Evaluation of spectrophotometric methods. J Agr Food Chem 2006; 54:607-16.
  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC. Meth- odological aspects about in vitro evaluation of antioxi- dant properties. Anal Chim Acta 2008; 613:1-19.
  • Erdogan S, Ates B, Durmaz G, Yilmaz I, Seckin T. Pres- surized liquid extraction of phenolic compounds from Anatolia propolis and their radical scavenging capaci- ties. Food Chem Toxicol 2011; 49:1592-7.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an im- proved ABTS radical cation decolorization assay. Free Radical Bio Med 1999; 26:1231-7.
  • Cano A, Acosta M, Arnao MB. A method to measure an- tioxidant activity in organic media: application to lipo- philic vitamins. Redox Rep 2000; 5:365-70.
  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfon- ic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reduc- ing antioxidant power (FRAP) and 2,2 ‘-diphenyl-1-pic- rylhydrazyl (DPPH) methods. J Agr Food Chem 2006; 54:1151-7.
  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM. The influence of pH on antioxidant properties and the mechanism of antioxi- dant action of hydroxyflavones. Free Radical Bio Med 2001; 31:869-81.
  • Osman AM, Wong KKY, Hill SJ, Fernyhough A. Isola- tion and the characterization of the degradation prod- ucts of the mediator ABTS-derived radicals formed upon reaction with polyphenols. Biochem Bioph Res Co 2006; 340:597-603.
  • Erel O. A novel automated method to measure total an- tioxidant response against potent free radical reactions. Clin Biochem 2004; 37:112-9.
  • Buratti S, Pellegrini N, Brenna OV, Mannino S. Rapid electrochemical method for the evaluation of the antioxi- dant power of some lipophilic food extracts. J Agr Food Chem 2001; 49:5136-41.
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘’antioxidant power’’: The FRAP assay. Anal Biochem 1996; 239:70-6.
  • Benzie IF. An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clin Biochem 1996; 29:111-6.
  • Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified fer- ric reducing/antioxidant power assay. J Agr Food Chem 2000; 48:3396-402.
  • Nilsson J, Pillai D, Onning G, Persson C, Nilsson A, Akesson B. Comparison of the 2,2’-azinobis-3-ethylben- zotiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total an- tioxidant capacity in extracts of fruit and vegetables. Mol Nutr Food Res 2005; 49:239-46.
  • Ou BX, Huang DJ, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of com- mon vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J Agr Food Chem 2002; 50:3122-8.
  • Apak R, Guclu K, Ozyurek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capa- bility in the presence of neocuproine: CUPRAC method. J Agr Food Chem 2004; 52:7970-81.
  • Perez-Jimenez J, Arranz S, Tabernero M, Diaz-Rubio ME, Serrano J, Goni I, Saura-Calixto F. Updated methodol- ogy to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res Int 2008; 41:274-85.
  • Ndhlala AR, Moyo M, Van Staden J. Natural Antioxi- dants: Fascinating or Mythical Biomolecules? Molecules 2010; 15:6905-30.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a Free- Radical Method to Evaluate Antioxidant Activity. Food Sci Technol-Leb 1995; 28:25-30.
  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. A pro- cedure to measure the antiradical efficiency of polyphe- nols. J Sci Food Agr 1998; 76:270-6.
  • Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agr Food Chem 2000; 48:3597-604.
  • Arnao MB. Some methodological problems in the deter- mination of antioxidant activity using chromogen radi- cals: a practical case. Trends Food Sci Tech 2000; 11:419- 21.
  • Ozcelik B, Lee JH, Min DB. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J Food Sci 2003; 68:487-90.
  • Nomura T, Kikuchi M, Kubodera A, Kawakami Y. Pro- ton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem Mol Biol Int 1997; 42:361-70.
  • Guclu K, Sozgen K, Tutem E, Ozyurek M, Apak R. Spec- trophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and phar- maceuticals. Talanta 2005; 65:1226-32.
  • Teshima N, Katsumata H, Kurihara M, Sakai T, Ka- washima T. Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline. Ta- lanta 1999; 50:41-7.
Year 2013, Volume: 17 Issue: 2, 93 - 103, 24.10.2014

Abstract

References

  • Cao GH, Alessio HM, Cutler RG. Oxygen-Radical Ab- sorbency Capacity Assay for Antioxidants. Free Radic Bio Med 1993; 14:303-11.
  • Niki E. Free-Radical Initiators as Source of Water-Solu- ble or Lipid-Soluble Peroxyl Radicals. Method Enzymol 1990; 186:100-8.
  • Huang DJ, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and validation of oxygen rad- ical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the sol- ubility enhancer. J Agr Food Chem 2002; 50:1815-21.
  • Cao G, Prior RL. Measurement of oxygen radical absorb- ance capacity in biological samples. Methods Enzymol 1999;299:50-62.
  • Huang DJ, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling sys- tem coupled with a microplate flourescence reader in 96- well format. J Agr Food Chem 2002; 50:4437-44.
  • Prior RL, Hoang H, Gu LW, Wu XL, Bacchiocca M, How- ard L, Hampsch-Woodill M, Huang DJ, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capac- ity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agr Food Chem 2003; 51:3273-9.
  • Wayner DD, Burton GW, Ingold KU, Locke S. Quanti- tative Measurement of the Total, Peroxyl Radical-Trap- ping Antioxidant Capability of Human-Blood Plasma by Controlled Peroxidation - the Important Contribution Made by Plasma-Proteins. Febs Lett 1985; 187:33-7.
  • Wayner DDM, Burton GW, Ingold KU, Barclay LR, Locke SJ. The Relative Contributions of Vitamin-E, Urate, Ascorbate and Proteins to the Total Peroxyl Rad- ical-Trapping Antioxidant Activity of Human-Blood Plasma. Biochim Biophys Acta 1987; 924:408-19.
  • Delange RJ, Glazer AN. Phycoerythrin Fluorescence- Based Assay for Peroxy-Radicals - a Screen for Biologi- cally Relevant Protective Agents. Anal Biochem 1989; 177:300-6.
  • Valkonen M, Kuusi T. Spectrophotometric assay for total peroxyl radical-trapping antioxidant potential in human serum. J Lipid Res 1997; 38:823-33.
  • Hammes E, Hoffmann A, Plieth C, Hansen UP. Light-in- duced decrease in DCF fluorescence of wheat leaves in the presence of salicyl hydroxamate. Protoplasma 2005; 227:11-5.
  • Burda S, Oleszek W. Antioxidant and antiradical activi- ties of flavonoids. J Agr Food Chem 2001; 49:2774-9.
  • Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperox- ides: A possible link between diet and atherosclerosis. Free Radical Bio Med 1998; 25: 250-2.
  • Huang D, Ou B, Prior RL. The chemistry behind antioxi- dant capacity assays. J Agric Food Chem 2005;53:1841-56.
  • Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F. Analysis of plasma antioxidant capacity by competition kinetics. Free Radical Bio Med 1998; 24:1228-34.
  • Ordoudi SA, Tsimidou MZ. Crocin bleaching assay step by step: Observations and suggestions for an alternative validated protocol. J Agr Food Chem 2006; 54:1663-71.
  • Bowry VW, Ingold KU. The unexpected role of vitamin E (alpha-tocopherol) in the peroxidation of human low- density lipoprotein. Accounts Chem Res 1999; 32:27-34.
  • Lussignoli S, Fraccaroli M, Andrioli G, Brocco G, Bel- lavite P. A microplate-based colorimetric assay of the to- tal peroxyl radical trapping capability of human plasma. Anal Biochem 1999; 269:38-44.
  • Vinson JA, Su XH, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: Fruits. J Agr Food Chem 2001; 49:5315-21.
  • Wang MF, Simon JE, Aviles IF, He K, Zheng QY, Tad- mor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agr Food Chem 2003; 51:601-8.
  • Maranz S, Wiesman Z, Garti N. Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agr Food Chem 2003; 51:6268-73.
  • Cai R, Hettiarachchy NS, Jalaluddin A. High-perfor- mance liquid chromatography determination of phe- nolic constituents in 17 varieties of cowpeas. J Agr Food Chem 2003; 51:1623-7.
  • Jayasinghe C, Gotoh N, Aoki T, Wada S. Phenolics com- position and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agr Food Chem 2003; 51:4442-9.
  • Stratil P, Klejdus B, Kuban V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables - Evaluation of spectrophotometric methods. J Agr Food Chem 2006; 54:607-16.
  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC. Meth- odological aspects about in vitro evaluation of antioxi- dant properties. Anal Chim Acta 2008; 613:1-19.
  • Erdogan S, Ates B, Durmaz G, Yilmaz I, Seckin T. Pres- surized liquid extraction of phenolic compounds from Anatolia propolis and their radical scavenging capaci- ties. Food Chem Toxicol 2011; 49:1592-7.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an im- proved ABTS radical cation decolorization assay. Free Radical Bio Med 1999; 26:1231-7.
  • Cano A, Acosta M, Arnao MB. A method to measure an- tioxidant activity in organic media: application to lipo- philic vitamins. Redox Rep 2000; 5:365-70.
  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfon- ic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reduc- ing antioxidant power (FRAP) and 2,2 ‘-diphenyl-1-pic- rylhydrazyl (DPPH) methods. J Agr Food Chem 2006; 54:1151-7.
  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM. The influence of pH on antioxidant properties and the mechanism of antioxi- dant action of hydroxyflavones. Free Radical Bio Med 2001; 31:869-81.
  • Osman AM, Wong KKY, Hill SJ, Fernyhough A. Isola- tion and the characterization of the degradation prod- ucts of the mediator ABTS-derived radicals formed upon reaction with polyphenols. Biochem Bioph Res Co 2006; 340:597-603.
  • Erel O. A novel automated method to measure total an- tioxidant response against potent free radical reactions. Clin Biochem 2004; 37:112-9.
  • Buratti S, Pellegrini N, Brenna OV, Mannino S. Rapid electrochemical method for the evaluation of the antioxi- dant power of some lipophilic food extracts. J Agr Food Chem 2001; 49:5136-41.
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘’antioxidant power’’: The FRAP assay. Anal Biochem 1996; 239:70-6.
  • Benzie IF. An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clin Biochem 1996; 29:111-6.
  • Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified fer- ric reducing/antioxidant power assay. J Agr Food Chem 2000; 48:3396-402.
  • Nilsson J, Pillai D, Onning G, Persson C, Nilsson A, Akesson B. Comparison of the 2,2’-azinobis-3-ethylben- zotiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total an- tioxidant capacity in extracts of fruit and vegetables. Mol Nutr Food Res 2005; 49:239-46.
  • Ou BX, Huang DJ, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of com- mon vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J Agr Food Chem 2002; 50:3122-8.
  • Apak R, Guclu K, Ozyurek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capa- bility in the presence of neocuproine: CUPRAC method. J Agr Food Chem 2004; 52:7970-81.
  • Perez-Jimenez J, Arranz S, Tabernero M, Diaz-Rubio ME, Serrano J, Goni I, Saura-Calixto F. Updated methodol- ogy to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res Int 2008; 41:274-85.
  • Ndhlala AR, Moyo M, Van Staden J. Natural Antioxi- dants: Fascinating or Mythical Biomolecules? Molecules 2010; 15:6905-30.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a Free- Radical Method to Evaluate Antioxidant Activity. Food Sci Technol-Leb 1995; 28:25-30.
  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. A pro- cedure to measure the antiradical efficiency of polyphe- nols. J Sci Food Agr 1998; 76:270-6.
  • Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agr Food Chem 2000; 48:3597-604.
  • Arnao MB. Some methodological problems in the deter- mination of antioxidant activity using chromogen radi- cals: a practical case. Trends Food Sci Tech 2000; 11:419- 21.
  • Ozcelik B, Lee JH, Min DB. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J Food Sci 2003; 68:487-90.
  • Nomura T, Kikuchi M, Kubodera A, Kawakami Y. Pro- ton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem Mol Biol Int 1997; 42:361-70.
  • Guclu K, Sozgen K, Tutem E, Ozyurek M, Apak R. Spec- trophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and phar- maceuticals. Talanta 2005; 65:1226-32.
  • Teshima N, Katsumata H, Kurihara M, Sakai T, Ka- washima T. Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline. Ta- lanta 1999; 50:41-7.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ebru Büyüktuncel This is me

Publication Date October 24, 2014
Published in Issue Year 2013 Volume: 17 Issue: 2

Cite

APA Büyüktuncel, E. (2014). Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. Marmara Pharmaceutical Journal, 17(2), 93-103. https://doi.org/10.12991/mpj.22340
AMA Büyüktuncel E. Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. J Res Pharm. October 2014;17(2):93-103. doi:10.12991/mpj.22340
Chicago Büyüktuncel, Ebru. “Toplam Fenolik içerik Ve Antioksidan Kapasite Tayininde kullanılan başlıca Spektrofotometrik yöntemler”. Marmara Pharmaceutical Journal 17, no. 2 (October 2014): 93-103. https://doi.org/10.12991/mpj.22340.
EndNote Büyüktuncel E (October 1, 2014) Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. Marmara Pharmaceutical Journal 17 2 93–103.
IEEE E. Büyüktuncel, “Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler”, J Res Pharm, vol. 17, no. 2, pp. 93–103, 2014, doi: 10.12991/mpj.22340.
ISNAD Büyüktuncel, Ebru. “Toplam Fenolik içerik Ve Antioksidan Kapasite Tayininde kullanılan başlıca Spektrofotometrik yöntemler”. Marmara Pharmaceutical Journal 17/2 (October 2014), 93-103. https://doi.org/10.12991/mpj.22340.
JAMA Büyüktuncel E. Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. J Res Pharm. 2014;17:93–103.
MLA Büyüktuncel, Ebru. “Toplam Fenolik içerik Ve Antioksidan Kapasite Tayininde kullanılan başlıca Spektrofotometrik yöntemler”. Marmara Pharmaceutical Journal, vol. 17, no. 2, 2014, pp. 93-103, doi:10.12991/mpj.22340.
Vancouver Büyüktuncel E. Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. J Res Pharm. 2014;17(2):93-103.

.