BibTex RIS Cite

Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy

Year 2012, Volume: 16 Issue: 2, 65 - 76, 07.03.2014

Abstract

References

  • Iqbal K, Grundke-Iqbal I. Opportunities and challenges in developing Alzheimer disease therapeutics. Acta Neuropathol 2011;122:543-9.
  • Stahl SM. Stahl’s Essential Psychopharmacology. Neuro- scientific Basis and Practical Applications. Third Edition, Cambridge University Press, New York. 2008, pp. 899-942.
  • Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008;59:201-20.
  • Mejia S, Giraldo M, Pineda D, Ardila A, Lopera F. Non- genetic factors as modifiers of the age of onset of familial Alzheimer’s disease. Int Psychogeriatr 2003;15:337-49.
  • Mattson MP. Pathways towards and away from Alzhe- imer’s disease. Nature 2004;430:631-9.
  • Rothman SM, Mattson MP. Adverse stress, hippocam- pal networks, and Alzheimer disease. Neuromol Med 2010;12:56-70.
  • Arendt T. Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 2009;118:167-79.
  • Crews L, Masliah E. Molecular mechanisms of neuro- degeneration in Alzheimer’s disease. Hum Mol Gen 2010;19:R12-R20.
  • Uzbay İT. Alzheimer hastalığına yönelik çalışmalarda kullanılan deneysel hayvan modelleri. Demans Dergisi 2003;3:5-14.
  • Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and dif- ferences. Acta Neuropathol 2008;115:5-38.
  • Ashford JW, Jarvik KL. Alzheimer’s disease: does neu- ron plasticity predispose to axonal neurofibrillary de- generation? N Engl J Med 1985;5:388-9.
  • Ramon γ Cajal S. Degeneration and regeneration Ram- on γ Cajal S. of the nervous system. Oxford University Press, London, 1928.
  • Ramon γ Cajal S. Histologie du systeme nerveux. A. Maloine, Paris, 1911.
  • Mesulam MM. A plasticity-based theory of the patho- genesis of Alzheimer’s disease. Ann N Y Acad Sci 2000;924:42-52.
  • Teter B, Ashford W. Neuroplasticity in Alzheimer’s dis- ease. J Neurosci Res 2002;70:402-37.
  • Uzbay İT. Psikofarmakolojinin Temelleri ve Deneysel Teknikler. Çizgi Tıp Yayınevi, Ankara, 2004.
  • Squire LR. Memory and hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 1992;99:195-231.
  • Sala M, Perez J, Soloff P, di Nemi SU, Caverzasi E, Soares JC, Brambilla P. Stress and hippocampus abnormalities in psychiatric disorders. Eur Neuropsychopharmacol 2004;14: 393-405.
  • Poldrack RA, Gabrieli JD. Functional anatomy of long- term memory. J Clin Neurophysiol 1997;14:294-310.
  • Shu SY, Wu YM, Bao XM, Leonard B. Interactions among memory-related centers in the brain. J Neurosci Res 2003;71:609-16.
  • Cahill L. Neurobiological mechanisms of emotionally influ- enced long-term memory. Prog Brain Res 2000;126:29-37.
  • Brewin CR. A cognitive neuroscience account of post- traumatic stress disorder and its treatment. Behav Res Ther 2001;39:373-93.
  • Wittenberg GM, Tsien JZ. An emerging molecular and cellular framework for memory processing by the hip- pocampus. Trends Neurosci 2002;25:501-5.
  • Davies KL, Maloney AJ. Selective loss of central cholin- ergic neurons in Alzheimer’s disease. Lancet 1976;2:1403.
  • Winblad B. Memeantine and Alzheimer Disease. Science Press Ltd., London. 2003, pp. 5-9.
  • Greenameyre JT, Young AB,Penny JB. Quantitative autoradiographic distribution of L-[3H] glutamate- binding sites in rat central nervous system. J Neurosci 1984;4:2133-44.
  • Danysz W, Zajaczkowski W, Parsons CG. Modulation of learning processes by ionotropic glutamate receptor lig- ands. Behav Pharmacol 1995;6:455-74.
  • Collingridge GL, Singer W. Excitatory amino acid re- ceptors and synaptic plasticity. Trend Pharmacol Sci 1990;11:290-6.
  • Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease - a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000;2:85-97.
  • Uzbay IT, Oglesby MW. Nitric oxide and substance de- pendence. Neurosci Biobehav Rev 2001;25:43-52.
  • Domek-Lopacinska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s dis- ease. Mol Neurobiol 2010;41:129-37.
  • Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009;118:5-36.
  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC. Characterization and chromosomal locali- zation of a cDNA encoding brain amyloid of Alzheim- er’s disease. Science 1987;235:877-80.
  • Robakis NK, Ramakrishna N, Wolfe G, Wishniewski HM. Molecular cloning and characterization of a DNA encod- ing the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 1987;84:4190-4.
  • Tanzi RE, Gusella JW, Watkins PC, Bruns GA, St George- Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kur- nit DM, Neve RL. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzhe- imer locus. Science 1987;235:880-4.
  • Galimberti D, Scapini E. Progress in Alzheimer disease. J Neurol 2012;259:201-11.
  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Ton- egawa S. Skeletal and CNS defects in Presenilin-1-defi- cient mice. Cell 1997;89:629-39.
  • Wong PC, Zheng H, Chen H, Becher MW, Sirinaths- inghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LH, Sisodia SS. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 1997;387:288-92.
  • Nishimura M, Yu G, Levesque G, Zhang DM, Ruel L, Chen F, Milman P, Holmes E, Liang Y, Kawarai T, Jo E, Supala A, Rogaeva E, Xu DM, Janus C, Levesque L, Bi Q, Duthie M, Rozmahel R, Mattila K, Lannfelt L, Westaway D, Mount HT, Woodgett J, St George-Hyslop P. Presenilin mutations associated with Alzheimer disease cause defec- tive intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat Med 1999;5:164-9.
  • Chen Q, Schubert D. Presenilin-interacting proteins. Ex- pert Rev Mol Med 2002;4:1-18.
  • Steiner H, Revesz T, Neumann M, Romig H, Grim MG, Pe- sold B, Kretzschmar HA, Hardy J, Holton JL, Baumeister R, Houlden H, Haass C. A pathogenic presenilin-1 deletion causes abberrant Abeta 42 production in the absence of congophilic amyloid plaques. J Biol Chem 2001;276:7233-9.
  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller- Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733-6.
  • Jack CRJ, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MV, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s patho- logical cascade. Lancet Neurol 2010;9:119-28.
  • Breitner JC, Wyse BW, Anthony JC, Welsh-Bohmer KA, Steffens DC, Norton MC, Tschanz JT, Plassman BL, Meyer MR, Skoog I, Khachaturian A. APOE-epsilon4 count pre- dicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology 1999;53:321-31.
  • Verghese PB, Castellano JM, Holtzman DM. Apolipo- protein E in Alzheimer‘s disease and other neurological disorders. Lancet Neurol 2011;10:241-52.
  • Forero DA, Casadeus G, Perry G, Arboleda H. Synaptic dysfunction and oxidative stress in Alzheimer disease: Emerging mechanisms. J Cell Mol Med 2006;10:796-805.
  • Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger- Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O‘brien J, Pasquier F, Robert P, Ros- sor M, Salloway S, Stern Y, Visser PJ, Scheltens P. Research criteria for the diagnosis of Alzheimer‘s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734-46.
  • Dubois B, Feldman HH, Jacova C, Cummings JL, Deko- sky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meg- uro K, O‘Brien J, Pasquier F, Robert P, Rossor M, Sallo- way S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Schel- tens P. Revising the definition of Alzheimer‘s disease: a new lexicon. Lancet Neurol 2010;9:1118-27.
  • Uzbay IT. A New Approach to Etiopathogenezis of De- pression: Neuroplasticity. Nova Science Publishers, Inc., New York. 2011, pp.35-76.
  • Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E. Stress- induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antide- pressant treatment with tianeptine. Proc Natl Acad Sci USA 2001;98:12796-801.
  • Fuchs E, Czéh B, Kole MHP, Michaelis T, Lucassen PL. Alterations of neuroplasticity in depression: the hip- pocampus and beyond. Eur Neuropsychopharmacol 2004;14:S481-90.
  • Lucassen PJ, Fuchs E, Czéh B. Antidepressant treat- ment with tianeptine reduces apopitosis in hippocam- pal dentate gyrus and temporal cortex. Biol Psychiatry 2004;55:789-96.
  • Carvey PM. Drug Action in the Central Nervous System. Oxford University Press, New York, 1998.
  • Sah DWY, Ossipov MH, Porreca F. Neuropathic factors as novel therapeutics for neuropathic pain. Nature Re- views 2003;2:460-72.
  • Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005;15:319-29.
  • Lukiw WJ, Bazan NG. Inflammatory, apoptotic, and sur- vival gene signaling in Alzheimer’s disease. Mol Neuro- biol 2010;42:10-6.
  • Tery RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cogni- tive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-80.
  • Masliah E, Mallory M, Hansen L, De Teresa R, Alford M, Terry R. Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett
  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995;16:285-98.
  • Cullen WK, Suh YH, Anwyl R, Rowan MJ. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport 1997;8:3213-7.
  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Vio- la KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. Diffusible, nonfibrillar ligands derived from Abeta-142 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998;95:6448-53.
  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Inzarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin ST, Hsiao K. Impaired synap- tic plasticity and learning in amyloid precursor protein transgenic mice. Nat Neurosci 1999;2:271-6.
  • Arriagada P, Growdon J, Hedley-Whyte E, Hyman B. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992;42:631-9.
  • Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT. Neuronal loss corre- lates with but exceeds neurofibrillary tangles in Alzhe- imer’s disease. Ann Neurol 1997;41:17-24.
  • Buell SJ, Coleman PD. Dendritic growth in the aged hu- man brain and failure of growth in senile dementia. Sci- ence 1979;206:854-6.
  • Coleman PD, Flood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neuro- biol Aging 1987;8:521-45.
  • de Ruiter JP, Uylings HB. Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 1987;402:217-29.
  • Flood DG, Coleman PD. Hippocampal plasticity in nor- mal aging and decreased plasticity in Alzheimer’s dis- ease. Prog Brain Res 1990;83:435-43.
  • Knowles RB, Gomez-Isla T, Hyman BT. Abeta associated neuropil changes: correlation with neuronal loss and de- mentia. J Neuropathol Exp Neurol 1998;57:1122-30.
  • D’Amore JD, Kajdasz ST, McLellan ME, Bacskai BJ, Stern EA, Hyman BT. In vivo multiphoton imaging of a trans- genic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajecto- ries. J Neuropathol Exp Neurol 2003;62:137-45.
  • Knowles RB, Wyart C, Buldyrev SV, Cruz L, Urbanc B, Hasselmo ME, Stanley HE, Hyman BT. Plaque-induced neurite abnormalities: implications for disruption of neuronal networks in Alzheimer’s disease. Proc Natl Acad Sci USA 1999;96:5274-9.
  • Terry RD, Masliah E, Hansen LA. Structural basis of the cognitive alterations in Alzheimer’s disease. In: Alzhe- imer’s Disease. Editors: Terry RD, Katzman R, Bick K, Raven Press, New York. 1994, pp. 179-96.
  • Anderton BH, Callahan I, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C. Dendritic changes in Alzheimer’s disease and factors that may underlie these changes. Prog Neurobiol 1998;55:595-609.
  • Rapoport SL. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s dis- ease. Eur Arch Psychiatry Clin Neurosci 1999;249(Sup- pl.):46-55.
  • Ihara Y. Massive somatodendritic sprouting of cortical neurons in Alzheimer’s disease. Brain Res 1988;25:364-7.
  • Jorgensen MB. The role of signal transduction in the delayed necrosis of the hippocampal pyramidal cells following transient ischemia. Acta Neurol Scand 1993;143(Suppl):1-20.
  • Scott SA. Dendritic atrophy and remodeling of amy- gdaloid neurons in Alzheimer’s disease. Dementia 1993;121:113-8.
  • Arendt T. Alzheimer’s disease as a disorder of mecha- nisms underlying structural brain self-organization. Neuroscience 2001a;102:723-65.
  • Spires TL, Hannan AJ. Molecular mechanisms mediat- ing pathological plasticity in Huntingt’n’s disease and Alzheimer’s disease. J Neurochem 2007;100:874-82.
  • Hyman BT, Van Horsen GW, Damasio AR,Barnes CL. Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 1984;225:1168-70.
  • Break H, Break E. Neuropathological strategies of Alzhe- imer-related changes. Acta Neuropathol 1991;82:239-59.
  • Gengler S, Hamilton A, Hölscher C. Synaptic plastic- ity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS one 2010;5:e9764.
  • Cotman CW, Poon WW, Rissman RA, Blurton-Jones M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 2005;64:104-12.
  • Marx J. Neuroscience. New leads on the “how” of Alzhe- imer’s. Science 2001;293:2192-4.
  • Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer disease. J Cell Biol 1996;132-25.
  • Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzhe- imer’s disease brain. J Neurosci 1998;18:2081-7.
  • Yang Y, Geldmacher DS, Herrup K. DANN replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 2001;21:2661-8.
  • Copani A, Condorelli F, Caruso A, Vancheri C, sala A, Giuffrida SAM, Cononico PL, Nicoletti F, Sortino MA. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 1999;13:2225-34.
  • Arendt T. Disturbance of neuronal plasticity is a criti- cal pathogenetic event in Alzheimer’s disease. Int J Dev Neurosci 2001;19:231-45.
  • Jorgensen OS, Brooksbank BW, Balazs R. Neuronal plas- ticity and astrocytic reaction in Down syndrome and Alzheimer disease. J Neurol Sci 1990;98:63-79.
  • Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Gen Brain Behav 2008;7(Suppl. 1):43-56.
  • Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 2001;11:272-80.
  • Svendsen CN, Cooper JD, Sofroniew MV. Trophic factor effects on septal cholinergic neurons. Ann N Y Acad Sci
  • Robakis NK, Anderson JP, Refolo LM, Wallace W. Ex- pression of the Alzheimer amyloid precursor in brain tis- sue and effects of NGF and EGF on its metabolism. Clin Neuropharmacol 1991;14(Suppl.1):S15-S23.
  • Villa A, Latasa MJ, Pascual A. Nerve growth factor modulates the expression and secretion of beta-amyloid precursor protein through different mechanisms in PC12 cells. J Neurochem 2001;77:1077-84.
  • Hellweg R, Jockers-Scherubl M. Neurotrophic factors in memory disorders. Life Sci 1994;55:2165-9.
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neu- robiol 2001;63:71-124.
  • Allen SJ, Wilcock GK, Dawbarn D. Profound and se- lective loss of catalytic TrkB immunureactivity in Alzheimer’s disease. Biochem Biophys Res Commun 1999;264:648-51.
  • Ferrer I, Martin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E. BDNF and full-lenght and truncat- ed TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 1999;58:729-39.
  • Desai P, Nebes R, DeKosky ST, Kamboh MI. Investiga- tion of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzhe- imer’s disease (AD) and quantitative measures of AD progression. Neurosci Lett 2005;379:229-34.
  • Akatsu H, Yamagata HD, Kawamata J, Kamino K, Takeda M, Yamamoto T, Miki T, Tooyama I, Shimohama S, Kosa- ka K. Variations in the BDNF gene in autopsy-confirmed Alzheimer’s disease and dementia with Lewy bodies in Japan. Dement Geriatr Cogn Disord 2006;22:216-22.
  • Thoenen H, Zafra F, Hengerer B, Lindholm D. The syn- thesis of nerve growth factor and brain-derived neuro- trophic factor in hippocampal and cortical neurons is regulated by specific transmitter systems. Ann N Y Acad Sci 1991;640:86-90.
  • da Penha Berzaghi M, Cooper J, Castren E, Zafra F, Sof- roniew M, Thoenen H, Lindholm D. Cholinergic regu- lation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT- 3) mRNA levels in the developing rat hippocampus. J Neurosci 1993;13:3813-26.
  • Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E. The neuroptotective agent memantine induces brain-derived neurotrophic factors and trkB receptor ex- pression in rat brain. Mol Cell Neurosci 2001;18:247-58.
  • Murase K, Igarashi K, Hayashi K. Neurotrophin-3 (NT- 3) levels in the developing rat nervous system and in hu- man samples. Clin Chim Acta 1994;227:23-36.
  • Hock C, Heese K, Muller-Spahn F, Hulette C, Rosen- berg C, Otten U. Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzhe- imer’s disease. Neurosci Lett 1998;241:151-4.
  • Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas- Navarro J, Riederer P. Brain-derived neurotrophic factor and nurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci 2000;18:807-13.
  • Hock C, Heese K, Muller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U. Increased cerebrospinal fluid levels of neurotrophin-3 (NT-3) in elderly patients with major depression. Mol Psychiatry 2000;5:510-3.
  • Cheng B, Mattson MP. Glucose deprivation elicits neu- rofibrillary tangle-like antigenic changes in hippocapal neurons: prevention by NGF and bFGF. Exp Neurol 1992;117:114-23.
  • Kato T, Sasaki H, Katagiri T, Sasaki H, Koiwai K, You- ki H, Totsuka S, Ishii T. The binding of basic fibroblast growth factor to Alzheimer’s neurofibrillary tangles and senile plaques. Neurosci Lett 1991;122:33-6.
  • Stieber A, Mourelatos Z, Gonatas NK. In Alzheimer’s disease the golgi apparatus of a population of neu- rons without neurofibrillary tangles is fragmented and atrophic. 1996;148:415-26.
  • Cummings BJ, Su JH, Cotman CW. Neuritic involvement within bFGF immunopositive plaques of Alzheimer’s disease. Exp Neurol 1993;124:315-25.
  • Burack MA, Halpain S. Site-specific regulation of Alzhe- imer-like tau phosphorilation in living neurons. Neuro- science 1996;72:167-84.
  • Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA. Neurogenezis and aging: FGF-2 and HB-EGF restore neurogenezis in hippocam- pus and subventricular zone of aged mice. Aging Cell 2003;2:175-83.
  • Tatebayashi Y, Haque N, Tung YC, Iqbal K, Grundke- Iqbal I. Role of tau phosphorylation by glycogen syn- thase kinase-3beta in the regulation of organelle trans- port. J Cell Sci 2004;117:1653-63.
  • Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Levine M, Booker L, Oremus M. Effectiveness of cholinesterase inhibitors and memantine for treating de- mentia: evidence review for a clinical practice guideline. Ann Intern Med 2008;148:379-97.
  • Galimberti D, Scapini E. Alzhimer’s disease: from patho- genesis to disease modifying approaches. CNS Neurol Disord Drug Trgets 2011;10:163-74.
  • Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH, Weiner MF, Bottiglieri T, Jin S, Stokes KT, Thomas RG, Thal LJ. High-dose B vitamin supplementa- tion and cognitive decline in Alzheimer disease: a rand- omized controlled trial. JAMA 2008;300:1774-83.
  • Barten DM, Albright CF. Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 2008;37:171-86.

Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy

Year 2012, Volume: 16 Issue: 2, 65 - 76, 07.03.2014

Abstract

ABSTRACT: Alzheimer disease (AD) is the major cause of dementia in the aged individuals.
It is a neurodegenerative disorder characterized by apoptosis and loss of neurons resulting
in synaptic dysfunction in central pathways involved in learning and memory. Neuroplasticity
can simply be defined as changes in the brain neurons, and structural and functional
changes in synapses formed by these neurons. If the changes are not confined to a single
neuron but reach the level of a synapse the adaptive response formed may also be called
“synaptic plasticity”. Brain is adapted to all exogenous and endogenous stimulations (i.e.
environmental or emotional stresses) by neuroplasticity. The most essential statement on
AD pathology is that it assault the processes associated with neuroplasticity in central nervous
system (CNS). Directly focusing on the causes of damages of synaptic elements and
development of new therapeutic approaches devoted to reverse impaired neuroplasticity
induced by the disorder may be a more effective strategy and provide more consistent solutions
in the treatment of AD. The main objective of this review article is to update our knowledge
on AD in the light of the present literature and discuss the new approaches and targets
such as neuroplasticity hypothesis of AD and new candidate drugs.
KEYWORDS: Alzheimer disease; neuroplasticity; central nervous system (CNS);
pharmacotherapy

References

  • Iqbal K, Grundke-Iqbal I. Opportunities and challenges in developing Alzheimer disease therapeutics. Acta Neuropathol 2011;122:543-9.
  • Stahl SM. Stahl’s Essential Psychopharmacology. Neuro- scientific Basis and Practical Applications. Third Edition, Cambridge University Press, New York. 2008, pp. 899-942.
  • Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008;59:201-20.
  • Mejia S, Giraldo M, Pineda D, Ardila A, Lopera F. Non- genetic factors as modifiers of the age of onset of familial Alzheimer’s disease. Int Psychogeriatr 2003;15:337-49.
  • Mattson MP. Pathways towards and away from Alzhe- imer’s disease. Nature 2004;430:631-9.
  • Rothman SM, Mattson MP. Adverse stress, hippocam- pal networks, and Alzheimer disease. Neuromol Med 2010;12:56-70.
  • Arendt T. Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 2009;118:167-79.
  • Crews L, Masliah E. Molecular mechanisms of neuro- degeneration in Alzheimer’s disease. Hum Mol Gen 2010;19:R12-R20.
  • Uzbay İT. Alzheimer hastalığına yönelik çalışmalarda kullanılan deneysel hayvan modelleri. Demans Dergisi 2003;3:5-14.
  • Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and dif- ferences. Acta Neuropathol 2008;115:5-38.
  • Ashford JW, Jarvik KL. Alzheimer’s disease: does neu- ron plasticity predispose to axonal neurofibrillary de- generation? N Engl J Med 1985;5:388-9.
  • Ramon γ Cajal S. Degeneration and regeneration Ram- on γ Cajal S. of the nervous system. Oxford University Press, London, 1928.
  • Ramon γ Cajal S. Histologie du systeme nerveux. A. Maloine, Paris, 1911.
  • Mesulam MM. A plasticity-based theory of the patho- genesis of Alzheimer’s disease. Ann N Y Acad Sci 2000;924:42-52.
  • Teter B, Ashford W. Neuroplasticity in Alzheimer’s dis- ease. J Neurosci Res 2002;70:402-37.
  • Uzbay İT. Psikofarmakolojinin Temelleri ve Deneysel Teknikler. Çizgi Tıp Yayınevi, Ankara, 2004.
  • Squire LR. Memory and hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 1992;99:195-231.
  • Sala M, Perez J, Soloff P, di Nemi SU, Caverzasi E, Soares JC, Brambilla P. Stress and hippocampus abnormalities in psychiatric disorders. Eur Neuropsychopharmacol 2004;14: 393-405.
  • Poldrack RA, Gabrieli JD. Functional anatomy of long- term memory. J Clin Neurophysiol 1997;14:294-310.
  • Shu SY, Wu YM, Bao XM, Leonard B. Interactions among memory-related centers in the brain. J Neurosci Res 2003;71:609-16.
  • Cahill L. Neurobiological mechanisms of emotionally influ- enced long-term memory. Prog Brain Res 2000;126:29-37.
  • Brewin CR. A cognitive neuroscience account of post- traumatic stress disorder and its treatment. Behav Res Ther 2001;39:373-93.
  • Wittenberg GM, Tsien JZ. An emerging molecular and cellular framework for memory processing by the hip- pocampus. Trends Neurosci 2002;25:501-5.
  • Davies KL, Maloney AJ. Selective loss of central cholin- ergic neurons in Alzheimer’s disease. Lancet 1976;2:1403.
  • Winblad B. Memeantine and Alzheimer Disease. Science Press Ltd., London. 2003, pp. 5-9.
  • Greenameyre JT, Young AB,Penny JB. Quantitative autoradiographic distribution of L-[3H] glutamate- binding sites in rat central nervous system. J Neurosci 1984;4:2133-44.
  • Danysz W, Zajaczkowski W, Parsons CG. Modulation of learning processes by ionotropic glutamate receptor lig- ands. Behav Pharmacol 1995;6:455-74.
  • Collingridge GL, Singer W. Excitatory amino acid re- ceptors and synaptic plasticity. Trend Pharmacol Sci 1990;11:290-6.
  • Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease - a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000;2:85-97.
  • Uzbay IT, Oglesby MW. Nitric oxide and substance de- pendence. Neurosci Biobehav Rev 2001;25:43-52.
  • Domek-Lopacinska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s dis- ease. Mol Neurobiol 2010;41:129-37.
  • Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009;118:5-36.
  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC. Characterization and chromosomal locali- zation of a cDNA encoding brain amyloid of Alzheim- er’s disease. Science 1987;235:877-80.
  • Robakis NK, Ramakrishna N, Wolfe G, Wishniewski HM. Molecular cloning and characterization of a DNA encod- ing the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 1987;84:4190-4.
  • Tanzi RE, Gusella JW, Watkins PC, Bruns GA, St George- Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kur- nit DM, Neve RL. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzhe- imer locus. Science 1987;235:880-4.
  • Galimberti D, Scapini E. Progress in Alzheimer disease. J Neurol 2012;259:201-11.
  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Ton- egawa S. Skeletal and CNS defects in Presenilin-1-defi- cient mice. Cell 1997;89:629-39.
  • Wong PC, Zheng H, Chen H, Becher MW, Sirinaths- inghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LH, Sisodia SS. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 1997;387:288-92.
  • Nishimura M, Yu G, Levesque G, Zhang DM, Ruel L, Chen F, Milman P, Holmes E, Liang Y, Kawarai T, Jo E, Supala A, Rogaeva E, Xu DM, Janus C, Levesque L, Bi Q, Duthie M, Rozmahel R, Mattila K, Lannfelt L, Westaway D, Mount HT, Woodgett J, St George-Hyslop P. Presenilin mutations associated with Alzheimer disease cause defec- tive intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat Med 1999;5:164-9.
  • Chen Q, Schubert D. Presenilin-interacting proteins. Ex- pert Rev Mol Med 2002;4:1-18.
  • Steiner H, Revesz T, Neumann M, Romig H, Grim MG, Pe- sold B, Kretzschmar HA, Hardy J, Holton JL, Baumeister R, Houlden H, Haass C. A pathogenic presenilin-1 deletion causes abberrant Abeta 42 production in the absence of congophilic amyloid plaques. J Biol Chem 2001;276:7233-9.
  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller- Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733-6.
  • Jack CRJ, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MV, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s patho- logical cascade. Lancet Neurol 2010;9:119-28.
  • Breitner JC, Wyse BW, Anthony JC, Welsh-Bohmer KA, Steffens DC, Norton MC, Tschanz JT, Plassman BL, Meyer MR, Skoog I, Khachaturian A. APOE-epsilon4 count pre- dicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology 1999;53:321-31.
  • Verghese PB, Castellano JM, Holtzman DM. Apolipo- protein E in Alzheimer‘s disease and other neurological disorders. Lancet Neurol 2011;10:241-52.
  • Forero DA, Casadeus G, Perry G, Arboleda H. Synaptic dysfunction and oxidative stress in Alzheimer disease: Emerging mechanisms. J Cell Mol Med 2006;10:796-805.
  • Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger- Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O‘brien J, Pasquier F, Robert P, Ros- sor M, Salloway S, Stern Y, Visser PJ, Scheltens P. Research criteria for the diagnosis of Alzheimer‘s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734-46.
  • Dubois B, Feldman HH, Jacova C, Cummings JL, Deko- sky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meg- uro K, O‘Brien J, Pasquier F, Robert P, Rossor M, Sallo- way S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Schel- tens P. Revising the definition of Alzheimer‘s disease: a new lexicon. Lancet Neurol 2010;9:1118-27.
  • Uzbay IT. A New Approach to Etiopathogenezis of De- pression: Neuroplasticity. Nova Science Publishers, Inc., New York. 2011, pp.35-76.
  • Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E. Stress- induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antide- pressant treatment with tianeptine. Proc Natl Acad Sci USA 2001;98:12796-801.
  • Fuchs E, Czéh B, Kole MHP, Michaelis T, Lucassen PL. Alterations of neuroplasticity in depression: the hip- pocampus and beyond. Eur Neuropsychopharmacol 2004;14:S481-90.
  • Lucassen PJ, Fuchs E, Czéh B. Antidepressant treat- ment with tianeptine reduces apopitosis in hippocam- pal dentate gyrus and temporal cortex. Biol Psychiatry 2004;55:789-96.
  • Carvey PM. Drug Action in the Central Nervous System. Oxford University Press, New York, 1998.
  • Sah DWY, Ossipov MH, Porreca F. Neuropathic factors as novel therapeutics for neuropathic pain. Nature Re- views 2003;2:460-72.
  • Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005;15:319-29.
  • Lukiw WJ, Bazan NG. Inflammatory, apoptotic, and sur- vival gene signaling in Alzheimer’s disease. Mol Neuro- biol 2010;42:10-6.
  • Tery RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cogni- tive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-80.
  • Masliah E, Mallory M, Hansen L, De Teresa R, Alford M, Terry R. Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett
  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995;16:285-98.
  • Cullen WK, Suh YH, Anwyl R, Rowan MJ. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport 1997;8:3213-7.
  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Vio- la KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. Diffusible, nonfibrillar ligands derived from Abeta-142 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998;95:6448-53.
  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Inzarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin ST, Hsiao K. Impaired synap- tic plasticity and learning in amyloid precursor protein transgenic mice. Nat Neurosci 1999;2:271-6.
  • Arriagada P, Growdon J, Hedley-Whyte E, Hyman B. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992;42:631-9.
  • Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT. Neuronal loss corre- lates with but exceeds neurofibrillary tangles in Alzhe- imer’s disease. Ann Neurol 1997;41:17-24.
  • Buell SJ, Coleman PD. Dendritic growth in the aged hu- man brain and failure of growth in senile dementia. Sci- ence 1979;206:854-6.
  • Coleman PD, Flood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neuro- biol Aging 1987;8:521-45.
  • de Ruiter JP, Uylings HB. Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 1987;402:217-29.
  • Flood DG, Coleman PD. Hippocampal plasticity in nor- mal aging and decreased plasticity in Alzheimer’s dis- ease. Prog Brain Res 1990;83:435-43.
  • Knowles RB, Gomez-Isla T, Hyman BT. Abeta associated neuropil changes: correlation with neuronal loss and de- mentia. J Neuropathol Exp Neurol 1998;57:1122-30.
  • D’Amore JD, Kajdasz ST, McLellan ME, Bacskai BJ, Stern EA, Hyman BT. In vivo multiphoton imaging of a trans- genic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajecto- ries. J Neuropathol Exp Neurol 2003;62:137-45.
  • Knowles RB, Wyart C, Buldyrev SV, Cruz L, Urbanc B, Hasselmo ME, Stanley HE, Hyman BT. Plaque-induced neurite abnormalities: implications for disruption of neuronal networks in Alzheimer’s disease. Proc Natl Acad Sci USA 1999;96:5274-9.
  • Terry RD, Masliah E, Hansen LA. Structural basis of the cognitive alterations in Alzheimer’s disease. In: Alzhe- imer’s Disease. Editors: Terry RD, Katzman R, Bick K, Raven Press, New York. 1994, pp. 179-96.
  • Anderton BH, Callahan I, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C. Dendritic changes in Alzheimer’s disease and factors that may underlie these changes. Prog Neurobiol 1998;55:595-609.
  • Rapoport SL. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s dis- ease. Eur Arch Psychiatry Clin Neurosci 1999;249(Sup- pl.):46-55.
  • Ihara Y. Massive somatodendritic sprouting of cortical neurons in Alzheimer’s disease. Brain Res 1988;25:364-7.
  • Jorgensen MB. The role of signal transduction in the delayed necrosis of the hippocampal pyramidal cells following transient ischemia. Acta Neurol Scand 1993;143(Suppl):1-20.
  • Scott SA. Dendritic atrophy and remodeling of amy- gdaloid neurons in Alzheimer’s disease. Dementia 1993;121:113-8.
  • Arendt T. Alzheimer’s disease as a disorder of mecha- nisms underlying structural brain self-organization. Neuroscience 2001a;102:723-65.
  • Spires TL, Hannan AJ. Molecular mechanisms mediat- ing pathological plasticity in Huntingt’n’s disease and Alzheimer’s disease. J Neurochem 2007;100:874-82.
  • Hyman BT, Van Horsen GW, Damasio AR,Barnes CL. Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 1984;225:1168-70.
  • Break H, Break E. Neuropathological strategies of Alzhe- imer-related changes. Acta Neuropathol 1991;82:239-59.
  • Gengler S, Hamilton A, Hölscher C. Synaptic plastic- ity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS one 2010;5:e9764.
  • Cotman CW, Poon WW, Rissman RA, Blurton-Jones M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 2005;64:104-12.
  • Marx J. Neuroscience. New leads on the “how” of Alzhe- imer’s. Science 2001;293:2192-4.
  • Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer disease. J Cell Biol 1996;132-25.
  • Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzhe- imer’s disease brain. J Neurosci 1998;18:2081-7.
  • Yang Y, Geldmacher DS, Herrup K. DANN replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 2001;21:2661-8.
  • Copani A, Condorelli F, Caruso A, Vancheri C, sala A, Giuffrida SAM, Cononico PL, Nicoletti F, Sortino MA. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 1999;13:2225-34.
  • Arendt T. Disturbance of neuronal plasticity is a criti- cal pathogenetic event in Alzheimer’s disease. Int J Dev Neurosci 2001;19:231-45.
  • Jorgensen OS, Brooksbank BW, Balazs R. Neuronal plas- ticity and astrocytic reaction in Down syndrome and Alzheimer disease. J Neurol Sci 1990;98:63-79.
  • Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Gen Brain Behav 2008;7(Suppl. 1):43-56.
  • Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 2001;11:272-80.
  • Svendsen CN, Cooper JD, Sofroniew MV. Trophic factor effects on septal cholinergic neurons. Ann N Y Acad Sci
  • Robakis NK, Anderson JP, Refolo LM, Wallace W. Ex- pression of the Alzheimer amyloid precursor in brain tis- sue and effects of NGF and EGF on its metabolism. Clin Neuropharmacol 1991;14(Suppl.1):S15-S23.
  • Villa A, Latasa MJ, Pascual A. Nerve growth factor modulates the expression and secretion of beta-amyloid precursor protein through different mechanisms in PC12 cells. J Neurochem 2001;77:1077-84.
  • Hellweg R, Jockers-Scherubl M. Neurotrophic factors in memory disorders. Life Sci 1994;55:2165-9.
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neu- robiol 2001;63:71-124.
  • Allen SJ, Wilcock GK, Dawbarn D. Profound and se- lective loss of catalytic TrkB immunureactivity in Alzheimer’s disease. Biochem Biophys Res Commun 1999;264:648-51.
  • Ferrer I, Martin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E. BDNF and full-lenght and truncat- ed TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 1999;58:729-39.
  • Desai P, Nebes R, DeKosky ST, Kamboh MI. Investiga- tion of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzhe- imer’s disease (AD) and quantitative measures of AD progression. Neurosci Lett 2005;379:229-34.
  • Akatsu H, Yamagata HD, Kawamata J, Kamino K, Takeda M, Yamamoto T, Miki T, Tooyama I, Shimohama S, Kosa- ka K. Variations in the BDNF gene in autopsy-confirmed Alzheimer’s disease and dementia with Lewy bodies in Japan. Dement Geriatr Cogn Disord 2006;22:216-22.
  • Thoenen H, Zafra F, Hengerer B, Lindholm D. The syn- thesis of nerve growth factor and brain-derived neuro- trophic factor in hippocampal and cortical neurons is regulated by specific transmitter systems. Ann N Y Acad Sci 1991;640:86-90.
  • da Penha Berzaghi M, Cooper J, Castren E, Zafra F, Sof- roniew M, Thoenen H, Lindholm D. Cholinergic regu- lation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT- 3) mRNA levels in the developing rat hippocampus. J Neurosci 1993;13:3813-26.
  • Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E. The neuroptotective agent memantine induces brain-derived neurotrophic factors and trkB receptor ex- pression in rat brain. Mol Cell Neurosci 2001;18:247-58.
  • Murase K, Igarashi K, Hayashi K. Neurotrophin-3 (NT- 3) levels in the developing rat nervous system and in hu- man samples. Clin Chim Acta 1994;227:23-36.
  • Hock C, Heese K, Muller-Spahn F, Hulette C, Rosen- berg C, Otten U. Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzhe- imer’s disease. Neurosci Lett 1998;241:151-4.
  • Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas- Navarro J, Riederer P. Brain-derived neurotrophic factor and nurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci 2000;18:807-13.
  • Hock C, Heese K, Muller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U. Increased cerebrospinal fluid levels of neurotrophin-3 (NT-3) in elderly patients with major depression. Mol Psychiatry 2000;5:510-3.
  • Cheng B, Mattson MP. Glucose deprivation elicits neu- rofibrillary tangle-like antigenic changes in hippocapal neurons: prevention by NGF and bFGF. Exp Neurol 1992;117:114-23.
  • Kato T, Sasaki H, Katagiri T, Sasaki H, Koiwai K, You- ki H, Totsuka S, Ishii T. The binding of basic fibroblast growth factor to Alzheimer’s neurofibrillary tangles and senile plaques. Neurosci Lett 1991;122:33-6.
  • Stieber A, Mourelatos Z, Gonatas NK. In Alzheimer’s disease the golgi apparatus of a population of neu- rons without neurofibrillary tangles is fragmented and atrophic. 1996;148:415-26.
  • Cummings BJ, Su JH, Cotman CW. Neuritic involvement within bFGF immunopositive plaques of Alzheimer’s disease. Exp Neurol 1993;124:315-25.
  • Burack MA, Halpain S. Site-specific regulation of Alzhe- imer-like tau phosphorilation in living neurons. Neuro- science 1996;72:167-84.
  • Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA. Neurogenezis and aging: FGF-2 and HB-EGF restore neurogenezis in hippocam- pus and subventricular zone of aged mice. Aging Cell 2003;2:175-83.
  • Tatebayashi Y, Haque N, Tung YC, Iqbal K, Grundke- Iqbal I. Role of tau phosphorylation by glycogen syn- thase kinase-3beta in the regulation of organelle trans- port. J Cell Sci 2004;117:1653-63.
  • Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Levine M, Booker L, Oremus M. Effectiveness of cholinesterase inhibitors and memantine for treating de- mentia: evidence review for a clinical practice guideline. Ann Intern Med 2008;148:379-97.
  • Galimberti D, Scapini E. Alzhimer’s disease: from patho- genesis to disease modifying approaches. CNS Neurol Disord Drug Trgets 2011;10:163-74.
  • Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH, Weiner MF, Bottiglieri T, Jin S, Stokes KT, Thomas RG, Thal LJ. High-dose B vitamin supplementa- tion and cognitive decline in Alzheimer disease: a rand- omized controlled trial. JAMA 2008;300:1774-83.
  • Barten DM, Albright CF. Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 2008;37:171-86.
There are 119 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tayfun Uzbay This is me

Publication Date March 7, 2014
Published in Issue Year 2012 Volume: 16 Issue: 2

Cite

APA Uzbay, T. (2014). Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy. Marmara Pharmaceutical Journal, 16(2), 65-76. https://doi.org/10.12991/mpj.18328
AMA Uzbay T. Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy. Marmara Pharm J. March 2014;16(2):65-76. doi:10.12991/mpj.18328
Chicago Uzbay, Tayfun. “Alzheimer Disease and Neuroplasticity: New Approaches and New Targets in Pharmacotherapy”. Marmara Pharmaceutical Journal 16, no. 2 (March 2014): 65-76. https://doi.org/10.12991/mpj.18328.
EndNote Uzbay T (March 1, 2014) Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy. Marmara Pharmaceutical Journal 16 2 65–76.
IEEE T. Uzbay, “Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy”, Marmara Pharm J, vol. 16, no. 2, pp. 65–76, 2014, doi: 10.12991/mpj.18328.
ISNAD Uzbay, Tayfun. “Alzheimer Disease and Neuroplasticity: New Approaches and New Targets in Pharmacotherapy”. Marmara Pharmaceutical Journal 16/2 (March 2014), 65-76. https://doi.org/10.12991/mpj.18328.
JAMA Uzbay T. Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy. Marmara Pharm J. 2014;16:65–76.
MLA Uzbay, Tayfun. “Alzheimer Disease and Neuroplasticity: New Approaches and New Targets in Pharmacotherapy”. Marmara Pharmaceutical Journal, vol. 16, no. 2, 2014, pp. 65-76, doi:10.12991/mpj.18328.
Vancouver Uzbay T. Alzheimer disease and neuroplasticity: New approaches and new targets in pharmacotherapy. Marmara Pharm J. 2014;16(2):65-76.