BibTex RIS Cite

Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri

Year 2017, Volume: 21 Issue: 1, 19 - 29, 20.09.2016
https://doi.org/10.12991/marupj.259877

Abstract

Polifenoller bitkilerin köklerinde, sebzelerde, meyvelerde ve çay, kahve, kakao, şarap gibi bitkisel ürünlerde yüksek miktarlarda bulunurlar. Polifenollerin antioksidan, anti-kanser, anti-inflamatuvar, anti-koagülan ve anti-mikrobiyal etkileri olduğunu belirten çok sayıda araştırma bulunmaktadır. Son yıllarda araştırıcılar bu bileşiklerin anti-kanser etkisinde rol alan moleküler mekanizmaların aydınlatılmasına yönelmiştir. Ancak, hem etki mekanizmalarının kanser hücre tipine göre farklılık göstermesi hem de biyoyararlanımlarının sınırlı olması, biyoyararlanımı arttıracak ve kanser hücre tipine spesifik yaklaşımların geliştirilmesini gerekli kılmaktadır. Bu derlemede, kurkumin, kuersetin ve çay kateşinlerinin yapısal özellikleri, biyoyararlanımları, biyolojik etkileri ve anti-kanser etki mekanizmaları tartışılmıştır.

References

  • Cragg, GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005; 100: 72-79.
  • World Cancer Report 2014, Ed: Stewart BW, Wild CP. Lyon, 2014. http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014
  • Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control. 1991; 6: 427-442.
  • Ziegler RG, Colavito EA, Hartge P, McAdams MJ, Schoenberg JB, Mason TJ, Fraumeni JF. Importance of alpha-carotene, beta-carotene, and other phytochemicals in the etiology of lung cancer. Natl Cancer Inst. 1996; 9: 612-615.
  • Unnati S, Ripal S , Sanjeev A , Niyati A. Novel anticancer agents from plant sources. Chinese J Nat Med. 2013; 11(1): 16-23.
  • Pitot HC. Endogenous carcinogenesis: the role of tumor promotion. Proc Soc Exp Biol Med. 1991; 198: 661-666.
  • Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993; 72 (Suppl.): 962-970.
  • Ting AH, McGarvey KM, Baylin SB. The cancer epigenome: components and functional correlates. Genes Dev. 2006; 20: 3215-3331.
  • Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009; 27(16): 2712–2725.
  • Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural polyphenols in cancer chemoresistance. Nutr Cancer 2016; 68: 879-891.
  • Farzaei MH, Bahramsoltani R, Rahimi R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des. 2016; May 31. Epub ahead of print.
  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79: 727-747.
  • Beecher GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr. 2003; 10: 3248-3254.
  • Kroft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998; 854: 435-442.
  • Rodrigo R, Libuy M, Feliu F, Hasson D. Polyphenols in disease: from diet to supplements. Curr Pharm Biotechnol. 2014; 15: 304-317.
  • Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014; 15: 4405-4409.
  • Yalçın AS. Antioksidanlar. Klin Gel. 1998; 11: 342-346.
  • Aktan AÖ, Yalçın AS. Ischemia-reperfusion injury, reactive oxygen metabolites, and the surgeon, Turkish J Med Sci, 1998; 28: 1-5.
  • Wang HK. The therapeutic potential of flavonoids. Expert Opin Investig Drugs, 2000; 9: 2103–2119.
  • Chahar MK, Sharma N, Dobhal MP, JC. Flavonoids: A versatile source of anticancer drugs. Pharmacogn Rev. 2011; 5: 1–12.
  • Choi BH, Kim W, Wang QC, Kim DC, Tan SN, Yong JW, Kim KT, Yoon HS. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett. 2008; 1: 37-45.
  • Payton F, Sandusky P, Alworth W. NMR study of the solution structure of curcumin. J Nat Prod. 2007; 70: 143-146.
  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006; 78: 2081-2087.
  • Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005; 41: 1955-1968.
  • Akpolat M., Topçu Tarladaçalışır Y, Uz YH, Sapmaz Metin M, Kızılay G. Kanser tedavisinde curcuminin yeri. Yeni Tıp Derg. 2010; 27: 142-147.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012; 226(2): 352–364.
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003; 36(3): 131–149.
  • Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm. 2010; 343(9): 489–499.
  • Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: from food spice to cancer prevention. Asian Pac J Cancer Prev. 2009; 10(6): 963–967.
  • Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013; 39(1): 27–36.
  • Tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci. 2014; 6(4): 139–146.
  • Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013; 15: 195-218.
  • Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem. 2015; 63(35): 7606–7614.
  • Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Safety. 2014; 13(1): 62–77.
  • Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. Z Lebensm Unters Forsch. 1985; 180(5): 402–404.
  • Leung MH, Colangelo H, Kee TW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 2008; 24(11): 5672–5675.
  • Kelly GS. Quercetin. Monograph. Altern Med Rev. 2011; 16: 172–194.
  • Moon YJ, Wang L, DiCenzo R, Morris ME. Quercetin pharmacokinetics in humans. Biopharm Drug Dispos. 2008; 29: 205-217.
  • Bors W, Heller W, Michel C, Saran M, Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990; 186: 343–355.
  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001; 74: 418–425.
  • Graefe EU, Derendorf H, Veit M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther. 1999; 5: 219-233.
  • Bokkenheuser VD, Shackleton CH, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J. 1987; 3: 953-956.
  • Nam J-S, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee S-S. Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 2016; 21: 108. doi:10.3390/molecules21010108
  • Youn H, Jeong JC, Jeong YS, Kim EJ, Um SJ. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013; 36: 944–951.
  • Vidya Priyadarsini, R, Senthil Murugan, R, Maitreyi S, Ramalingam K, Karunagaran, D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-B inhibition. Eur. J. Pharmacol. 2010; 649: 84–91.
  • Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug–DNA interaction. Cell Prolif. 2013; 46: 153–163.
  • Sugantha Priya E, Selvakumar K, Bavithra S, Elumalai P, Arunkumar R, Raja Singh P, Brindha Mercy A, Arunakaran J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol Sci. 2014; 35: 163–170.
  • Casella ML, Parody JP, Ceballos MP, Quiroga AD, Ronco MT, Francés DE, Monti JA, Pisani GB, Carnovale CE, Carrillo MC, de Luján Alvarez M. Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol Nutr Food Res. 2014; 58: 289–300.
  • Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, Chen DR. Quercetin-induced apoptosis acts through mitochondrial and caspase-3 dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol. 2009; 28: 493-503.
  • Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3 kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr. 2006; 136: 2715-2721.
  • Ong C, Tran E, Nguyen T, Ong C, Lee S, Lee J, Ng C, Leong C, Huynh H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in bad and hypophosphorylated retinoblastoma expressions. Oncol Rep. 2004; 11: 727–733.
  • Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006; 287: 109–116.
  • Tan WF, Lin LP, Li MH, Zhang YX, Tong YG, Xiao D, Ding J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol. 2003; 459: 255–262.
  • Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag. 2010; 6: 135–141.
  • Mutlu Altundağ E, Kasacı T, Yılmaz AM, Karademir B, Koçtürk S, Taga Y, Yalçın AS. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J Thyroid Res. 2016; Article ID 9843675, http://dx.doi.org/10.1155/2016/9843675
  • Kuhar M, Imran S, Singh N. Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol. 2007; 3: 121–128.
  • Appari M, Babu KR, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol. 2014; 45: 1391–1400.
  • Nessa MU, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011; 31: 3789–3797.
  • Hsieh TC, Wu JM. Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin. Anticancer Res. 2009; 29: 4025–4032.
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010; 44(5): 479-496.
  • Gibellini L, Pinti M, Nasi M, Biasi SD, Roat, E, Bertoncelli L, Cossarizza A. Interfering with ROS metabolism in cancer cells: the potential role of quercetin. Cancers. 2010; 2: 1288-1311.
  • da Silva J, Herrmann SM, Heuser V, Peres W, Possa Marroni N, Gonzalez-Gallego J, Erdtmann B. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem Toxicol. 2002; 40: 941–947.
  • Haskins AH, Su C, Engen A, Salinas VA, Maeda J, Uesaka M, Aizawa Y, Kato TA. Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data Brief. 2015; 6: 262–266.
  • Stoewsand GS, Anderson JL, Boyd JN, Hrazdina G, Babish JG, Walsh KM, Losco P. Quercetin: a mutagen, not a carcinogen, in Fischer rats. J Toxicol Environ Health. 1984; 14: 105–114.
  • Crebelli R, Aquilina G, Falcone E, Carere A. Urinary and faecal mutagenicity in Sprague–Dawley rats dosed with the food mutagens quercetin and rutin. Food Chem Toxicol. 1987; 25: 9–15.
  • Lugli E, Ferraresi R, Roat E, Troiano L, Pinti M, Nasi M. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk Res. 2009; 33: 140–150.
  • Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G. Effect of quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol. 2016; 60: 140–147.
  • Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm. 2016; 101: 15–24.
  • Ravishankar D, Watson KA, Boateng SY, Green RJ, Greco F, Osborn HM. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur J Med Chem. 2015; 97: 259–274.
  • Sudan S, Rupasinghe HV. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Exp Biol Med (Maywood). 2015; 240: 1452–1464.
  • Chen Z-M, Lin Z. Tea and human health: biomedical functions of tea active components and current issues. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015; 16: 87-102.
  • Üstün Ç, Demirci N. Çay bitkisinin (Camellia Sinensis L.) tarihsel gelişimi ve tıbbi açıdan değerlendirilmesi. Lokman Hekim J 2013; 3: 5-12.
  • Luczaj W, Skrzydlewska E. Antioxidative properties of black tea. Prev Med. 2005; 40: 910-918.
  • Tabassum H, Parvez S, Rehman H, Banerjee BD, Raisuddin S. Catechin as an antioxidant in liver mitochondrial toxicity: inhibition of tamoxifen-induced protein oxidation and lipid peroxidation. J Biochem Mol Toxicol. 2007; 21: 110–117.
  • Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IM, Helena AF, Uyemura SA, Santos AC, Curti C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact. 2005; 152: 67–78.
  • Ping Dou Q. Molecular mechanisms of green tea polyphenols. Nutr Cancer. 2009; 61: 827–835.
  • Adhami VM, Malik A, Zaman N, Sarfaraz S, Siddiqui IA, Syed DN, Afaq F, Pasha FS, Saleem M, Mukhtar H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res. 2007; 13: 1611-1619.
  • Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 11: 513-521.
  • Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005; 26: 958-967.
  • Bhattacharya U, Halder B, Mukhopadhyay S, Giri AK. Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci. 2009;100: 1971-1978.
  • Skotnicka M, Chorostowska-Wynimko, Jankun JJ, Skrzypczak-Jankun E. The black tea bioactivity: an overview. Centr Eur J Immunol 2011; 36: 284-292.
  • Koňariková K, Ježovičová M, Keresteš J, Gbelcová H, Ďuračková Z, Žitňanová I. Anticancer effect of black tea extract in human cancer cell lines. SpringerPlus 2015; 4: 127. doi: 10.1186/s40064-015-0871-4
  • Yılmaz AM, Mutlu Altundağ E, Karademir B, Koçtürk S, Taga Y, Yalçın AS. Effect of tea polyphenols on phase I and phase II enzyme activities and apoptotic cell death mechanism in breast cancer cells. First International Cell Death Research Congress, (May 4-7, 2016) İzmir, Turkey.
  • Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M, Tardito S, Gatti R, Uggeri J, Bettuzzi S. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis. 2014; 35 (4): 828-839.
  • Padmavathi B, Upreti M, Singh V, Rao AR, Singh RP, Rath PC. Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor. Nutr Cancer. 2005; 51(1): 59-67.
  • Chen D, Pamu S, Cui Q, Chen TH, Dou QP. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorgan Med Chem. 2012; 20: 3031-3037.
  • Luo H, Tang L, Tang M, Billam M, Huang T, Yu J, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis. 2006; 27: 262-268.

Anti-cancer effects of curcumin, quercetin and tea catechins

Year 2017, Volume: 21 Issue: 1, 19 - 29, 20.09.2016
https://doi.org/10.12991/marupj.259877

Abstract

Polyphenols are present in high
amounts in all parts of plants  including
roots, seeds, flowers, leaves, branches and trunk as  well as plant derived products such as tea,
coffee and wine.  Extensive amount of
information is available on biological  effects
of polyphenols including antioxidant, anti-cancer, antiinflammatory,  anti-coagulant and anti-microbial activities.  In recent years, researchers have turned their
interest towards  identifying molecular
mechanisms underlying the anti-cancer  effects
of these compounds. However, the limited bioavailability  of polyphenols and the existence of
differences in cancer cells  in terms of
intracellular mechanisms affected has necessitated  the use of specific approaches to individual
cancer cell types as  well as methods of
increasing bioavailability. In this review, the 
structures, bioavailability, biological activities and molecular  mechanisms of anti-cancer effects of curcumin,
quercetin and  tea catechins are
discussed.  

References

  • Cragg, GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005; 100: 72-79.
  • World Cancer Report 2014, Ed: Stewart BW, Wild CP. Lyon, 2014. http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014
  • Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control. 1991; 6: 427-442.
  • Ziegler RG, Colavito EA, Hartge P, McAdams MJ, Schoenberg JB, Mason TJ, Fraumeni JF. Importance of alpha-carotene, beta-carotene, and other phytochemicals in the etiology of lung cancer. Natl Cancer Inst. 1996; 9: 612-615.
  • Unnati S, Ripal S , Sanjeev A , Niyati A. Novel anticancer agents from plant sources. Chinese J Nat Med. 2013; 11(1): 16-23.
  • Pitot HC. Endogenous carcinogenesis: the role of tumor promotion. Proc Soc Exp Biol Med. 1991; 198: 661-666.
  • Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993; 72 (Suppl.): 962-970.
  • Ting AH, McGarvey KM, Baylin SB. The cancer epigenome: components and functional correlates. Genes Dev. 2006; 20: 3215-3331.
  • Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009; 27(16): 2712–2725.
  • Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural polyphenols in cancer chemoresistance. Nutr Cancer 2016; 68: 879-891.
  • Farzaei MH, Bahramsoltani R, Rahimi R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des. 2016; May 31. Epub ahead of print.
  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79: 727-747.
  • Beecher GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr. 2003; 10: 3248-3254.
  • Kroft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998; 854: 435-442.
  • Rodrigo R, Libuy M, Feliu F, Hasson D. Polyphenols in disease: from diet to supplements. Curr Pharm Biotechnol. 2014; 15: 304-317.
  • Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014; 15: 4405-4409.
  • Yalçın AS. Antioksidanlar. Klin Gel. 1998; 11: 342-346.
  • Aktan AÖ, Yalçın AS. Ischemia-reperfusion injury, reactive oxygen metabolites, and the surgeon, Turkish J Med Sci, 1998; 28: 1-5.
  • Wang HK. The therapeutic potential of flavonoids. Expert Opin Investig Drugs, 2000; 9: 2103–2119.
  • Chahar MK, Sharma N, Dobhal MP, JC. Flavonoids: A versatile source of anticancer drugs. Pharmacogn Rev. 2011; 5: 1–12.
  • Choi BH, Kim W, Wang QC, Kim DC, Tan SN, Yong JW, Kim KT, Yoon HS. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett. 2008; 1: 37-45.
  • Payton F, Sandusky P, Alworth W. NMR study of the solution structure of curcumin. J Nat Prod. 2007; 70: 143-146.
  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006; 78: 2081-2087.
  • Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005; 41: 1955-1968.
  • Akpolat M., Topçu Tarladaçalışır Y, Uz YH, Sapmaz Metin M, Kızılay G. Kanser tedavisinde curcuminin yeri. Yeni Tıp Derg. 2010; 27: 142-147.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012; 226(2): 352–364.
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003; 36(3): 131–149.
  • Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm. 2010; 343(9): 489–499.
  • Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: from food spice to cancer prevention. Asian Pac J Cancer Prev. 2009; 10(6): 963–967.
  • Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013; 39(1): 27–36.
  • Tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci. 2014; 6(4): 139–146.
  • Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013; 15: 195-218.
  • Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem. 2015; 63(35): 7606–7614.
  • Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Safety. 2014; 13(1): 62–77.
  • Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. Z Lebensm Unters Forsch. 1985; 180(5): 402–404.
  • Leung MH, Colangelo H, Kee TW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 2008; 24(11): 5672–5675.
  • Kelly GS. Quercetin. Monograph. Altern Med Rev. 2011; 16: 172–194.
  • Moon YJ, Wang L, DiCenzo R, Morris ME. Quercetin pharmacokinetics in humans. Biopharm Drug Dispos. 2008; 29: 205-217.
  • Bors W, Heller W, Michel C, Saran M, Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990; 186: 343–355.
  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001; 74: 418–425.
  • Graefe EU, Derendorf H, Veit M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther. 1999; 5: 219-233.
  • Bokkenheuser VD, Shackleton CH, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J. 1987; 3: 953-956.
  • Nam J-S, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee S-S. Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 2016; 21: 108. doi:10.3390/molecules21010108
  • Youn H, Jeong JC, Jeong YS, Kim EJ, Um SJ. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013; 36: 944–951.
  • Vidya Priyadarsini, R, Senthil Murugan, R, Maitreyi S, Ramalingam K, Karunagaran, D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-B inhibition. Eur. J. Pharmacol. 2010; 649: 84–91.
  • Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug–DNA interaction. Cell Prolif. 2013; 46: 153–163.
  • Sugantha Priya E, Selvakumar K, Bavithra S, Elumalai P, Arunkumar R, Raja Singh P, Brindha Mercy A, Arunakaran J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol Sci. 2014; 35: 163–170.
  • Casella ML, Parody JP, Ceballos MP, Quiroga AD, Ronco MT, Francés DE, Monti JA, Pisani GB, Carnovale CE, Carrillo MC, de Luján Alvarez M. Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol Nutr Food Res. 2014; 58: 289–300.
  • Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, Chen DR. Quercetin-induced apoptosis acts through mitochondrial and caspase-3 dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol. 2009; 28: 493-503.
  • Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3 kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr. 2006; 136: 2715-2721.
  • Ong C, Tran E, Nguyen T, Ong C, Lee S, Lee J, Ng C, Leong C, Huynh H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in bad and hypophosphorylated retinoblastoma expressions. Oncol Rep. 2004; 11: 727–733.
  • Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006; 287: 109–116.
  • Tan WF, Lin LP, Li MH, Zhang YX, Tong YG, Xiao D, Ding J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol. 2003; 459: 255–262.
  • Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag. 2010; 6: 135–141.
  • Mutlu Altundağ E, Kasacı T, Yılmaz AM, Karademir B, Koçtürk S, Taga Y, Yalçın AS. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J Thyroid Res. 2016; Article ID 9843675, http://dx.doi.org/10.1155/2016/9843675
  • Kuhar M, Imran S, Singh N. Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol. 2007; 3: 121–128.
  • Appari M, Babu KR, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol. 2014; 45: 1391–1400.
  • Nessa MU, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011; 31: 3789–3797.
  • Hsieh TC, Wu JM. Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin. Anticancer Res. 2009; 29: 4025–4032.
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010; 44(5): 479-496.
  • Gibellini L, Pinti M, Nasi M, Biasi SD, Roat, E, Bertoncelli L, Cossarizza A. Interfering with ROS metabolism in cancer cells: the potential role of quercetin. Cancers. 2010; 2: 1288-1311.
  • da Silva J, Herrmann SM, Heuser V, Peres W, Possa Marroni N, Gonzalez-Gallego J, Erdtmann B. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem Toxicol. 2002; 40: 941–947.
  • Haskins AH, Su C, Engen A, Salinas VA, Maeda J, Uesaka M, Aizawa Y, Kato TA. Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data Brief. 2015; 6: 262–266.
  • Stoewsand GS, Anderson JL, Boyd JN, Hrazdina G, Babish JG, Walsh KM, Losco P. Quercetin: a mutagen, not a carcinogen, in Fischer rats. J Toxicol Environ Health. 1984; 14: 105–114.
  • Crebelli R, Aquilina G, Falcone E, Carere A. Urinary and faecal mutagenicity in Sprague–Dawley rats dosed with the food mutagens quercetin and rutin. Food Chem Toxicol. 1987; 25: 9–15.
  • Lugli E, Ferraresi R, Roat E, Troiano L, Pinti M, Nasi M. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk Res. 2009; 33: 140–150.
  • Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G. Effect of quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol. 2016; 60: 140–147.
  • Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm. 2016; 101: 15–24.
  • Ravishankar D, Watson KA, Boateng SY, Green RJ, Greco F, Osborn HM. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur J Med Chem. 2015; 97: 259–274.
  • Sudan S, Rupasinghe HV. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Exp Biol Med (Maywood). 2015; 240: 1452–1464.
  • Chen Z-M, Lin Z. Tea and human health: biomedical functions of tea active components and current issues. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015; 16: 87-102.
  • Üstün Ç, Demirci N. Çay bitkisinin (Camellia Sinensis L.) tarihsel gelişimi ve tıbbi açıdan değerlendirilmesi. Lokman Hekim J 2013; 3: 5-12.
  • Luczaj W, Skrzydlewska E. Antioxidative properties of black tea. Prev Med. 2005; 40: 910-918.
  • Tabassum H, Parvez S, Rehman H, Banerjee BD, Raisuddin S. Catechin as an antioxidant in liver mitochondrial toxicity: inhibition of tamoxifen-induced protein oxidation and lipid peroxidation. J Biochem Mol Toxicol. 2007; 21: 110–117.
  • Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IM, Helena AF, Uyemura SA, Santos AC, Curti C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact. 2005; 152: 67–78.
  • Ping Dou Q. Molecular mechanisms of green tea polyphenols. Nutr Cancer. 2009; 61: 827–835.
  • Adhami VM, Malik A, Zaman N, Sarfaraz S, Siddiqui IA, Syed DN, Afaq F, Pasha FS, Saleem M, Mukhtar H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res. 2007; 13: 1611-1619.
  • Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 11: 513-521.
  • Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005; 26: 958-967.
  • Bhattacharya U, Halder B, Mukhopadhyay S, Giri AK. Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci. 2009;100: 1971-1978.
  • Skotnicka M, Chorostowska-Wynimko, Jankun JJ, Skrzypczak-Jankun E. The black tea bioactivity: an overview. Centr Eur J Immunol 2011; 36: 284-292.
  • Koňariková K, Ježovičová M, Keresteš J, Gbelcová H, Ďuračková Z, Žitňanová I. Anticancer effect of black tea extract in human cancer cell lines. SpringerPlus 2015; 4: 127. doi: 10.1186/s40064-015-0871-4
  • Yılmaz AM, Mutlu Altundağ E, Karademir B, Koçtürk S, Taga Y, Yalçın AS. Effect of tea polyphenols on phase I and phase II enzyme activities and apoptotic cell death mechanism in breast cancer cells. First International Cell Death Research Congress, (May 4-7, 2016) İzmir, Turkey.
  • Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M, Tardito S, Gatti R, Uggeri J, Bettuzzi S. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis. 2014; 35 (4): 828-839.
  • Padmavathi B, Upreti M, Singh V, Rao AR, Singh RP, Rath PC. Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor. Nutr Cancer. 2005; 51(1): 59-67.
  • Chen D, Pamu S, Cui Q, Chen TH, Dou QP. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorgan Med Chem. 2012; 20: 3031-3037.
  • Luo H, Tang L, Tang M, Billam M, Huang T, Yu J, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis. 2006; 27: 262-268.
There are 87 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

A. Suha Yalçın

Ayşe Mine Yılmaz This is me

Ergül Mutlu Altundağ

Semra Koçtürk

Publication Date September 20, 2016
Published in Issue Year 2017 Volume: 21 Issue: 1

Cite

APA Yalçın, A. S., Yılmaz, A. M., Mutlu Altundağ, E., Koçtürk, S. (2016). Anti-cancer effects of curcumin, quercetin and tea catechins. Marmara Pharmaceutical Journal, 21(1), 19-29. https://doi.org/10.12991/marupj.259877
AMA Yalçın AS, Yılmaz AM, Mutlu Altundağ E, Koçtürk S. Anti-cancer effects of curcumin, quercetin and tea catechins. Marmara Pharm J. September 2016;21(1):19-29. doi:10.12991/marupj.259877
Chicago Yalçın, A. Suha, Ayşe Mine Yılmaz, Ergül Mutlu Altundağ, and Semra Koçtürk. “Anti-Cancer Effects of Curcumin, Quercetin and Tea Catechins”. Marmara Pharmaceutical Journal 21, no. 1 (September 2016): 19-29. https://doi.org/10.12991/marupj.259877.
EndNote Yalçın AS, Yılmaz AM, Mutlu Altundağ E, Koçtürk S (September 1, 2016) Anti-cancer effects of curcumin, quercetin and tea catechins. Marmara Pharmaceutical Journal 21 1 19–29.
IEEE A. S. Yalçın, A. M. Yılmaz, E. Mutlu Altundağ, and S. Koçtürk, “Anti-cancer effects of curcumin, quercetin and tea catechins”, Marmara Pharm J, vol. 21, no. 1, pp. 19–29, 2016, doi: 10.12991/marupj.259877.
ISNAD Yalçın, A. Suha et al. “Anti-Cancer Effects of Curcumin, Quercetin and Tea Catechins”. Marmara Pharmaceutical Journal 21/1 (September 2016), 19-29. https://doi.org/10.12991/marupj.259877.
JAMA Yalçın AS, Yılmaz AM, Mutlu Altundağ E, Koçtürk S. Anti-cancer effects of curcumin, quercetin and tea catechins. Marmara Pharm J. 2016;21:19–29.
MLA Yalçın, A. Suha et al. “Anti-Cancer Effects of Curcumin, Quercetin and Tea Catechins”. Marmara Pharmaceutical Journal, vol. 21, no. 1, 2016, pp. 19-29, doi:10.12991/marupj.259877.
Vancouver Yalçın AS, Yılmaz AM, Mutlu Altundağ E, Koçtürk S. Anti-cancer effects of curcumin, quercetin and tea catechins. Marmara Pharm J. 2016;21(1):19-2.