Review
BibTex RIS Cite

Kozmetik Ürünlerin Fototoksik Etkileri: Mekanizması ve Alternatif Test Metotları

Year 2017, Volume: 21 Issue: 2, 207 - 215, 01.04.2017
https://doi.org/10.12991/marupj.277718

Abstract

Güneş ışığı ve fotoreaktif ksenobiyotiklere maruz kalan deride,

normal olmayan deri reaksiyonları görülebilir. Fototoksisite,

fotoreaktif kimyasal maddeler ve ışığa derinin aynı anda

maruz kalması sonucu oluşan yanıtı olarak tanımlanır.

Eritem, ödem, deri irritasyonu, kaşıntı gibi çeşitli belirtiler ile

kendini gösterir. Bazı organik kimyasal maddelerin moleküler

yapılarının UV ışığı absorblayan özellikte olması, madde

tarafından oluşturulacak fototoksisiteyi indükleyebilir. Bu

yapıya sahip ilaç ve kozmetik ürünlerin sayısı gün geçtikçe

artmaktadır. Kimyasal maddelerin fototoksik potansiyellerini

belirlemek için çeşitli test yöntemi geliştirilmiştir. Özellikle

3R kuralının kabul görmesinden sonra kimyasal maddelerin

ve kozmetik ürünlerin potansiyel toksik etkilerinin

değerlendirilmesi için, in vivo modellerin yerine birçok

alternatif in vitro yöntem geliştirilmiş, valide edilmiş ve

düzenleyici kuruluşlar tarafından kabul edilmiştir. 11 Mart

2013 tarihinde Avrupa Birliği’nde hayvanlar üzerinde test

edilen her tür kozmetik ve kişisel bakım ürününün satışının

yasaklanması ile birlikte kozmetik ürünlerin güvenlilik

değerlendirmelerinde alternatif In vitro toksisite testleri

kullanılmaya başlanmıştır. Fototoksisite testleri de dahil bu

alternatif testler birçok toksisite çalışması için uygundur. Bu

derlemede fototoksisitenin mekanizması ile bu toksik etkinin

belirlenmesi amacıyla kullanılan alternatif test yöntemleri

değerlendirilecektir.

References

  • Freeman AK, Gordon M. Dermatologic diseases and problems. In: Geriatric Medicine (4th edition). Springer, New York. 2006, pp. 869-881.
  • Kim K, Park H, Lim KM. Phototoxicity: Its Mechanism and Animal Alternative Test Methods. Toxicol Res 2015;31:97- 104. Review. Erratum in: Toxicol Res 2015; 31:321.
  • Organization for Economic Cooperation and Development (OECD) Test No. 432: In vitro 3T3 NRU Phototoxicity Test. OECD, Paris: OECD Publishing. No. 432, Paris 2004.
  • Lugovic L, Situm M, Ozanic-Bulic S, Sjerobabski-Masnec I. Phototoxic and photoallergic skin reactions. Coll Antropol 2007;1: 63-7.
  • Allen JE. Drug-induced photosensitivity. Clin Pharm 1993;12:580-7.
  • Lim HW. Abnormal responses to ultraviolet radiation: photosensitivity induced by exogenous agents. In: Fitzpatrick’s Dermatology in General Medicine. Editors: Wolff K, Goldsmith LA, Katz SI. McGraw-Hill Company, New York. 2007, pp.1589-2820.
  • Maibach H, Honari G. Applied Dermatotoxicology, Clinical Aspects. Elsevier. 2014, pp.41–56.
  • International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH S10 Photosafety Evaluation of Pharmaceuticals Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER), 2015.
  • Tonnesen HH. Formulation and stability testing of photolabile drugs. Int J Pharm 2001; 225:1-14.
  • Goncalo M. Phototoxic and photoallergic reactions. In: Contact Dermatitis. Springer. 2011, pp.361-376.
  • Ferguson J. Photosensitivity due to drugs. Photodermatol Photoimmunol Photomed 2002;18 :262-9.
  • Adachi T, Satou Y, Satou H, Shibata H, Miwa S, Iwase Y, Yamamoto T, Nishida A, Masutomi N. Assessment of 8-methosypsoralen, lomefloxacin, sparfloxacin, and pirfenidone phototoxicity in Long-Evans rats. Int J Toxicol 2015;34:16-23.
  • Boudon SM, Plappert-Helbig U, Odermatt A, Bauer D. Characterization of vemurafenib phototoxicity in a mouse model. Toxicol Sci 2014;137:259-67.
  • Yazici AC, Baz K, İkizoglu G, Kokturk A, Uzumlu H, Tataroglu C. Celecoxib induced photoallergic drug eruption. Int J Dermatol 2004;43:459-61.
  • Onoue S, Seto Y, Kato M, Aoki Y, Kojo Y, Yamada S. Inhalable powder formulation of pirfenidone with reduced phototoxic risk for treatment of pulmonary fibrosis. Pharm Res 2013;30:1586-96.
  • Seto Y, Inoue R, Kato M, Yamada S, Onoue S. Photosafety assessments on pirfenidone: photochemical, photobiological, and pharmacokinetic characterization. J Photochem Photobiol B 2013;120:44-51.
  • Moore DE. Drug-induced cutaneous photosensitivity: incidence, mechanism, prevention and management. Drug Saf 2002;25:345–72.
  • Epistein JH. Phototoxicity and photoallergy in man. J Am Acad Dermatol 1983;8: 141–7.
  • Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/ phototoxic potential of pharmaceutical substanes. Pharm Res 2006:23;156–64.
  • International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Guideline S10 Guidance on Photosafety Evaluation of Pharmaceuticals, 2014.
  • Kyuri K, Hyeonji P, Kyung-Min L. Phototoxicity: Its Mechanism and Animal Alternative Test Methods Toxicol Res 2015;31: 97–104.
  • Pathak MA, Joshi PC. The nature and molecular basis of cutaneous photosensitivity reactions to psoralens and coal tar. J Invest Dermatol 1983;80:66-74.
  • Roelandts R. Photodermatology over the past 125 years. Br J Dermatol 2014;171:926-8.
  • Kochevar IE, Taylor CR, Krutmann J. Fundamentals of cutaneous photobiology and photoimmunology. In: Fitzpatrick’s Dermatology in General Medicine (8thed.).Editors: Goldsmith LA, Katz SI, Gilchrest BA. McGraw-Hill Professional, USA. 2012.
  • Chignell CF, Motten AG, Buettner GR, Photoinduced free radicals from chiorpromazine and related phenothiazines: Relationship to phenothiazine-induced photosensitization. Environ Health Perspect 1985;64:103-10.
  • Mang R, Stege H, Krutmann J. Mechanisms of phototoxic and photoallergic reactions. In: Contact Dermatitis (5th ed). Editors: Johansen JD, Frosch PJ, Lepoittevin JP. Springer, Berlin. 2011, pp.155-163.
  • Poiger T, Buser HR, Muller M. Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 2001;20: 256–63.
  • Stephens ML, Mak NS. Reducing, Refining and Replacing the Use of Animals in Toxicity Testing. In: History of the 3Rs in toxicity testing: From Russell and Burch to 21st century toxicology. Editors: Allen D, Walters M. RSC Publishing, Cambridge, UK. 2013, pp.1–39.
  • Russell WMS, Burch RL, Hume CW. The Principles of Humane Experimental Technique. Methuen, London, UK. 1959.
  • European Commision (EC), Regulatıon (Ec) No 1223/2009 of The European Parlıament And Of The Councıl of 30 November 2009 on Cosmetic Products, Official Journal of the European Union, 2009.
  • European Commision (EC), Communication from the commission to the European Parlıament and the councılon the animal testing and marketing ban and on the state of play in relation to alternative methods in the field of cosmetics, Official Journal of the European Union, 2013.
  • European Commision (EC), Directive 2010/63/EU of the European Parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union L, 2010;276:33–79.
  • Seto Y, Hosoi K, Takagi H, Nakamura K, Kojima H, Yamada S, Onoue S. Exploratory and regulatory assessments on photosafety of new drug entities. Curr Drug Saf 2012;7:140–8.
  • Nishida H, Hirota M, Seto Y, Suzuki G, Kato M, Kitagaki M, Sugiyama M, Kouzuki H, Onoue S. Non-animal photosafety screening for complex cosmetic ingredients with photochemical and photobiochemical assessment tools. Regul Toxicol Pharmacol 2015;72:578-85.
  • Haranosono Y, Kurata M, Sakaki H. Establishment of an in silico phototoxicity prediction method by combining descriptors related to photo-absorption and photo-reaction. J Toxicol Sci 2014;39:655-64.
  • Onoue S, Kawamura K, Igarashi N, Zhou Y, Fujikawa M, Yamada H, Tsuda Y, Seto Y, Yamada S. Reactive oxygen species assay-based risk assessment of drug induced phototoxicity: classification criteria and application to drug candidates. J Pharm Biomed Anal 2008;47:967-72.
  • Guideline IHT. ICH guideline M3 (R2) on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. ICH, European Medicines Agency, 2009, pp.1-26.
  • Matsumoto N, Akimoto A, Kawashima H, Kim S. Comparative study of skin phototoxicity with three drugs by an In vivo mouse model. J Toxicol Sci 2010;35:97-100.
  • Wagai N, Tawara K. Possible reasons for differences in phototoxic potential of a 5 quinolone antibacterial agents: generation of toxic oxygen. Free Radical Res Commun 1992;17:387-98.
  • Clewell HJ 3rd. Coupling of computer modeling with In vitro methodologies to reduce animal usage in toxicity testing. Toxicol Lett 1993;68:101-17.
  • Kandarova H, Letašiova S. Alternative methods in toxicology: Pre-validated and validated methods. Interdiscip Toxicol 2011;4:107–13.
  • Organization for Economic Cooperation and Development (OECD) Extended Expert Consultation Meeting on The In vitro 3T3 NRU Phototoxicity Test Guideline Proposal, Berlin, 30’”- 31 ‘’ October 2001, Secretariat’s Final Summary Report, 15’ 11 March 2002, 2002.
  • Peters B. Holzhutter HG. In vitro phototoxicity testing: development and validation of a new concentration response analysis software and biostatistical analyses related to the use of various prediction models. Altern Lab Anim 2002;30:415- 32.
  • Pape WJ, Maurer T, Pfannenbecker U, Steiling W. The red blood cell phototoxicity test (photohaemolysis and haemoglobin oxidation): EU/COLIPA validation programme on phototoxicity (phase II). Altern Lab Anim 2001;29:145-62.
  • Yamamoto T, Tsurumaki Y, Takei M, Hosaka M, Oomori Y. In vitro method for prediction of the phototoxic potentials of fluoroquinolones. Toxicol In vitro 2001;15:721-7.
  • Sugiyama M, Itagaki H, Hariya T, Murakami N, Kato S. In vitro assays to predict phototoxicity of chemicals:(I) Red blood cell hemolysis assay. AATEX 1994;2:183-91.
  • Netzaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin (R), SkinEthic (R) and EpiDerm (R): An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2002;60:167-78.
  • Boelsma E, Gibbs S, Faller C, Ponec M. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 2000;80:82–8.
  • Ponec M, Boelsma E, Gibbs S, Mommaas M. Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 2002;1;4–17.
  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra M, Mommaas AM. Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 2000;203:211–25.
  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas, AM. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 1997;109:348–55.
  • Cannon CL, Neal PJ, Southee JA, Kubilus J, Klausner M. New epidermal model for dermal irritancy testing. Toxicol In vitro, 1994;8:889–91.
  • Pape WJ, Maurer T, Pfannenbecker U, Steiling W. The red blood cell phototoxicity test (photohaemolysis and haemoglobin oxidation): EU/COLIPA validation programme on phototoxicity (phase II). Altern Lab Anim 2001;29:145-62.
  • Yamamoto T, Tsurumaki Y, Takei M, Hosaka M, Oomori Y. In vitro method for prediction of the phototoxic potentials of fluoroquinolones. Toxicol In vitro 2001;15:721-7.
  • Sugiyama M, Itagaki H, Hariya T, Murakami N, Kato S. In vitro assays to predict phototoxicity of chemicals:(I) Red blood cell hemolysis assay. AATEX 1994;2:183-91.
  • Netzaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin (R), SkinEthic (R) and EpiDerm (R): An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2002;60:167-78.
  • Boelsma E, Gibbs S, Faller C, Ponec M. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 2000;80:82–8.
  • Ponec M, Boelsma E, Gibbs S, Mommaas M. Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 2002;1;4–17.
  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra M, Mommaas AM. Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 2000;203:211–25.
  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas, AM. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 1997;109:348–55.
  • Cannon CL, Neal PJ, Southee JA, Kubilus J, Klausner M. New epidermal model for dermal irritancy testing. Toxicol In vitro, 1994;8:889–91.
  • Netzlaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2005;60:167-78.
  • Jones P. In vitro phototoxicity assays. Editors: Chilcott RP, Price S. Skin Toxicology. John Wiley & Sons, England. 2008, pp.169-183.
  • Ceridono M, Tellner P, Bauer D, Barroso J, Alepee N, Corvi R, De Smedt A, Fellows MD, Gibbs NK, Heisler E, Jacobs A, Jirova D, Jones D, Kandarova H, Kasper P, Akunda JK, Krul C, Learn D, Liebsch M, Lynch AM, Muster W, Nakamura K, Nash JF, Pfannenbecker U, Phillips G, Robles C, Rogiers V, Van De Water F, Liminga UW, Vohr HW, Wattrelos O, Woods J, Zuang V, Kreysa J, Wilcox P. The 3T3 neutral red uptake phototoxicity test: Practical experience and implications for phototoxicity testing--the report of an ECVAM-EFPIA workshop. Regul Toxicol Pharmacol 2012;63:480-8.
  • Kejlova K, Jirova D, Bendova H, Kandarova H, Weidenhoffer Z, Kolarova H, Liebsch M. Phototoxicity of bergamot oil assessed by In vitro techniques in combination with human patch tests. Toxicol In vitro 2007;21:1298–1303.
  • Henry B, Foti C, Alsante K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J Photochem Photobiol B 2009;96:57-62.
  • Onoue S, Seto Y, Kato M, Aoki Y, Kojo Y, Yamada S. Inhalable powder formulation of pirfenidone with reduced phototoxic risk for treatment of pulmonary fibrosis. Pharm Res 2013;30:1586-96.
  • Eskes C. Application of alternative methods in the regulatory assessment of chemical safety related to human skin corrosion & irritation current status and future prospects. Swiss Federal Office of Public Health – FOPH 2010.
  • Vinardell M.P. The use of non-animal alternatives in the safety evaluations of cosmetics ingredients by the Scientific Committee on Consumer Safety (SCCS). Regul Toxicol Pharmacol 2015;71:198-204.

Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods

Year 2017, Volume: 21 Issue: 2, 207 - 215, 01.04.2017
https://doi.org/10.12991/marupj.277718

Abstract

Abnormal skin reactions may be observed in the skin subject
to sunlight and photoreactive xenobiotics. Phototoxicity can be
defined as the response to the combined exposure of the skin to
photoreactive xenobiotics and light. Phototoxicity occurs with
symptoms like erythema, edema, skin irritation and itching.
The UV-absorbing properties of various organic chemicals,
can lead to induction of phototoxicity by this substances.
Number of drugs and cosmetics, which have such properties,
are increasing from day to day. Several test methods were
developed to determine the phototoxic potential of chemical
substances. Particularly after the acceptance of 3R principle,
many alternative methods were developed, validated and
accepted by the regulatory authorities, for the evaluation of the
potential toxic effects of the chemicals. On March 11, 2013, the
commercial sale of all cosmetics and personal care products,
which were tested on animals, was banned in the European
Union and since then the safety evaluation of the cosmetics is
being conducted by alternative In vitro toxicity tests. These tests,
including tests for phototoxicity, are suitable for many toxicity
studies. This review will focus the mechanisms of phototoxicity
and the alternative test methods used for the detection of this
particular toxic effect.

References

  • Freeman AK, Gordon M. Dermatologic diseases and problems. In: Geriatric Medicine (4th edition). Springer, New York. 2006, pp. 869-881.
  • Kim K, Park H, Lim KM. Phototoxicity: Its Mechanism and Animal Alternative Test Methods. Toxicol Res 2015;31:97- 104. Review. Erratum in: Toxicol Res 2015; 31:321.
  • Organization for Economic Cooperation and Development (OECD) Test No. 432: In vitro 3T3 NRU Phototoxicity Test. OECD, Paris: OECD Publishing. No. 432, Paris 2004.
  • Lugovic L, Situm M, Ozanic-Bulic S, Sjerobabski-Masnec I. Phototoxic and photoallergic skin reactions. Coll Antropol 2007;1: 63-7.
  • Allen JE. Drug-induced photosensitivity. Clin Pharm 1993;12:580-7.
  • Lim HW. Abnormal responses to ultraviolet radiation: photosensitivity induced by exogenous agents. In: Fitzpatrick’s Dermatology in General Medicine. Editors: Wolff K, Goldsmith LA, Katz SI. McGraw-Hill Company, New York. 2007, pp.1589-2820.
  • Maibach H, Honari G. Applied Dermatotoxicology, Clinical Aspects. Elsevier. 2014, pp.41–56.
  • International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH S10 Photosafety Evaluation of Pharmaceuticals Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER), 2015.
  • Tonnesen HH. Formulation and stability testing of photolabile drugs. Int J Pharm 2001; 225:1-14.
  • Goncalo M. Phototoxic and photoallergic reactions. In: Contact Dermatitis. Springer. 2011, pp.361-376.
  • Ferguson J. Photosensitivity due to drugs. Photodermatol Photoimmunol Photomed 2002;18 :262-9.
  • Adachi T, Satou Y, Satou H, Shibata H, Miwa S, Iwase Y, Yamamoto T, Nishida A, Masutomi N. Assessment of 8-methosypsoralen, lomefloxacin, sparfloxacin, and pirfenidone phototoxicity in Long-Evans rats. Int J Toxicol 2015;34:16-23.
  • Boudon SM, Plappert-Helbig U, Odermatt A, Bauer D. Characterization of vemurafenib phototoxicity in a mouse model. Toxicol Sci 2014;137:259-67.
  • Yazici AC, Baz K, İkizoglu G, Kokturk A, Uzumlu H, Tataroglu C. Celecoxib induced photoallergic drug eruption. Int J Dermatol 2004;43:459-61.
  • Onoue S, Seto Y, Kato M, Aoki Y, Kojo Y, Yamada S. Inhalable powder formulation of pirfenidone with reduced phototoxic risk for treatment of pulmonary fibrosis. Pharm Res 2013;30:1586-96.
  • Seto Y, Inoue R, Kato M, Yamada S, Onoue S. Photosafety assessments on pirfenidone: photochemical, photobiological, and pharmacokinetic characterization. J Photochem Photobiol B 2013;120:44-51.
  • Moore DE. Drug-induced cutaneous photosensitivity: incidence, mechanism, prevention and management. Drug Saf 2002;25:345–72.
  • Epistein JH. Phototoxicity and photoallergy in man. J Am Acad Dermatol 1983;8: 141–7.
  • Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/ phototoxic potential of pharmaceutical substanes. Pharm Res 2006:23;156–64.
  • International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Guideline S10 Guidance on Photosafety Evaluation of Pharmaceuticals, 2014.
  • Kyuri K, Hyeonji P, Kyung-Min L. Phototoxicity: Its Mechanism and Animal Alternative Test Methods Toxicol Res 2015;31: 97–104.
  • Pathak MA, Joshi PC. The nature and molecular basis of cutaneous photosensitivity reactions to psoralens and coal tar. J Invest Dermatol 1983;80:66-74.
  • Roelandts R. Photodermatology over the past 125 years. Br J Dermatol 2014;171:926-8.
  • Kochevar IE, Taylor CR, Krutmann J. Fundamentals of cutaneous photobiology and photoimmunology. In: Fitzpatrick’s Dermatology in General Medicine (8thed.).Editors: Goldsmith LA, Katz SI, Gilchrest BA. McGraw-Hill Professional, USA. 2012.
  • Chignell CF, Motten AG, Buettner GR, Photoinduced free radicals from chiorpromazine and related phenothiazines: Relationship to phenothiazine-induced photosensitization. Environ Health Perspect 1985;64:103-10.
  • Mang R, Stege H, Krutmann J. Mechanisms of phototoxic and photoallergic reactions. In: Contact Dermatitis (5th ed). Editors: Johansen JD, Frosch PJ, Lepoittevin JP. Springer, Berlin. 2011, pp.155-163.
  • Poiger T, Buser HR, Muller M. Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 2001;20: 256–63.
  • Stephens ML, Mak NS. Reducing, Refining and Replacing the Use of Animals in Toxicity Testing. In: History of the 3Rs in toxicity testing: From Russell and Burch to 21st century toxicology. Editors: Allen D, Walters M. RSC Publishing, Cambridge, UK. 2013, pp.1–39.
  • Russell WMS, Burch RL, Hume CW. The Principles of Humane Experimental Technique. Methuen, London, UK. 1959.
  • European Commision (EC), Regulatıon (Ec) No 1223/2009 of The European Parlıament And Of The Councıl of 30 November 2009 on Cosmetic Products, Official Journal of the European Union, 2009.
  • European Commision (EC), Communication from the commission to the European Parlıament and the councılon the animal testing and marketing ban and on the state of play in relation to alternative methods in the field of cosmetics, Official Journal of the European Union, 2013.
  • European Commision (EC), Directive 2010/63/EU of the European Parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union L, 2010;276:33–79.
  • Seto Y, Hosoi K, Takagi H, Nakamura K, Kojima H, Yamada S, Onoue S. Exploratory and regulatory assessments on photosafety of new drug entities. Curr Drug Saf 2012;7:140–8.
  • Nishida H, Hirota M, Seto Y, Suzuki G, Kato M, Kitagaki M, Sugiyama M, Kouzuki H, Onoue S. Non-animal photosafety screening for complex cosmetic ingredients with photochemical and photobiochemical assessment tools. Regul Toxicol Pharmacol 2015;72:578-85.
  • Haranosono Y, Kurata M, Sakaki H. Establishment of an in silico phototoxicity prediction method by combining descriptors related to photo-absorption and photo-reaction. J Toxicol Sci 2014;39:655-64.
  • Onoue S, Kawamura K, Igarashi N, Zhou Y, Fujikawa M, Yamada H, Tsuda Y, Seto Y, Yamada S. Reactive oxygen species assay-based risk assessment of drug induced phototoxicity: classification criteria and application to drug candidates. J Pharm Biomed Anal 2008;47:967-72.
  • Guideline IHT. ICH guideline M3 (R2) on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. ICH, European Medicines Agency, 2009, pp.1-26.
  • Matsumoto N, Akimoto A, Kawashima H, Kim S. Comparative study of skin phototoxicity with three drugs by an In vivo mouse model. J Toxicol Sci 2010;35:97-100.
  • Wagai N, Tawara K. Possible reasons for differences in phototoxic potential of a 5 quinolone antibacterial agents: generation of toxic oxygen. Free Radical Res Commun 1992;17:387-98.
  • Clewell HJ 3rd. Coupling of computer modeling with In vitro methodologies to reduce animal usage in toxicity testing. Toxicol Lett 1993;68:101-17.
  • Kandarova H, Letašiova S. Alternative methods in toxicology: Pre-validated and validated methods. Interdiscip Toxicol 2011;4:107–13.
  • Organization for Economic Cooperation and Development (OECD) Extended Expert Consultation Meeting on The In vitro 3T3 NRU Phototoxicity Test Guideline Proposal, Berlin, 30’”- 31 ‘’ October 2001, Secretariat’s Final Summary Report, 15’ 11 March 2002, 2002.
  • Peters B. Holzhutter HG. In vitro phototoxicity testing: development and validation of a new concentration response analysis software and biostatistical analyses related to the use of various prediction models. Altern Lab Anim 2002;30:415- 32.
  • Pape WJ, Maurer T, Pfannenbecker U, Steiling W. The red blood cell phototoxicity test (photohaemolysis and haemoglobin oxidation): EU/COLIPA validation programme on phototoxicity (phase II). Altern Lab Anim 2001;29:145-62.
  • Yamamoto T, Tsurumaki Y, Takei M, Hosaka M, Oomori Y. In vitro method for prediction of the phototoxic potentials of fluoroquinolones. Toxicol In vitro 2001;15:721-7.
  • Sugiyama M, Itagaki H, Hariya T, Murakami N, Kato S. In vitro assays to predict phototoxicity of chemicals:(I) Red blood cell hemolysis assay. AATEX 1994;2:183-91.
  • Netzaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin (R), SkinEthic (R) and EpiDerm (R): An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2002;60:167-78.
  • Boelsma E, Gibbs S, Faller C, Ponec M. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 2000;80:82–8.
  • Ponec M, Boelsma E, Gibbs S, Mommaas M. Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 2002;1;4–17.
  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra M, Mommaas AM. Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 2000;203:211–25.
  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas, AM. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 1997;109:348–55.
  • Cannon CL, Neal PJ, Southee JA, Kubilus J, Klausner M. New epidermal model for dermal irritancy testing. Toxicol In vitro, 1994;8:889–91.
  • Pape WJ, Maurer T, Pfannenbecker U, Steiling W. The red blood cell phototoxicity test (photohaemolysis and haemoglobin oxidation): EU/COLIPA validation programme on phototoxicity (phase II). Altern Lab Anim 2001;29:145-62.
  • Yamamoto T, Tsurumaki Y, Takei M, Hosaka M, Oomori Y. In vitro method for prediction of the phototoxic potentials of fluoroquinolones. Toxicol In vitro 2001;15:721-7.
  • Sugiyama M, Itagaki H, Hariya T, Murakami N, Kato S. In vitro assays to predict phototoxicity of chemicals:(I) Red blood cell hemolysis assay. AATEX 1994;2:183-91.
  • Netzaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin (R), SkinEthic (R) and EpiDerm (R): An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2002;60:167-78.
  • Boelsma E, Gibbs S, Faller C, Ponec M. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 2000;80:82–8.
  • Ponec M, Boelsma E, Gibbs S, Mommaas M. Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 2002;1;4–17.
  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra M, Mommaas AM. Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 2000;203:211–25.
  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas, AM. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 1997;109:348–55.
  • Cannon CL, Neal PJ, Southee JA, Kubilus J, Klausner M. New epidermal model for dermal irritancy testing. Toxicol In vitro, 1994;8:889–91.
  • Netzlaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2005;60:167-78.
  • Jones P. In vitro phototoxicity assays. Editors: Chilcott RP, Price S. Skin Toxicology. John Wiley & Sons, England. 2008, pp.169-183.
  • Ceridono M, Tellner P, Bauer D, Barroso J, Alepee N, Corvi R, De Smedt A, Fellows MD, Gibbs NK, Heisler E, Jacobs A, Jirova D, Jones D, Kandarova H, Kasper P, Akunda JK, Krul C, Learn D, Liebsch M, Lynch AM, Muster W, Nakamura K, Nash JF, Pfannenbecker U, Phillips G, Robles C, Rogiers V, Van De Water F, Liminga UW, Vohr HW, Wattrelos O, Woods J, Zuang V, Kreysa J, Wilcox P. The 3T3 neutral red uptake phototoxicity test: Practical experience and implications for phototoxicity testing--the report of an ECVAM-EFPIA workshop. Regul Toxicol Pharmacol 2012;63:480-8.
  • Kejlova K, Jirova D, Bendova H, Kandarova H, Weidenhoffer Z, Kolarova H, Liebsch M. Phototoxicity of bergamot oil assessed by In vitro techniques in combination with human patch tests. Toxicol In vitro 2007;21:1298–1303.
  • Henry B, Foti C, Alsante K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J Photochem Photobiol B 2009;96:57-62.
  • Onoue S, Seto Y, Kato M, Aoki Y, Kojo Y, Yamada S. Inhalable powder formulation of pirfenidone with reduced phototoxic risk for treatment of pulmonary fibrosis. Pharm Res 2013;30:1586-96.
  • Eskes C. Application of alternative methods in the regulatory assessment of chemical safety related to human skin corrosion & irritation current status and future prospects. Swiss Federal Office of Public Health – FOPH 2010.
  • Vinardell M.P. The use of non-animal alternatives in the safety evaluations of cosmetics ingredients by the Scientific Committee on Consumer Safety (SCCS). Regul Toxicol Pharmacol 2015;71:198-204.
There are 69 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Özge Köse This is me

Pınar Erkekoğlu This is me

Suna Sabuncuoğlu This is me

Belma Koçer-gümüşel This is me

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Köse, Ö., Erkekoğlu, P., Sabuncuoğlu, S., Koçer-gümüşel, B. (2017). Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods. Marmara Pharmaceutical Journal, 21(2), 207-215. https://doi.org/10.12991/marupj.277718
AMA Köse Ö, Erkekoğlu P, Sabuncuoğlu S, Koçer-gümüşel B. Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods. J Res Pharm. May 2017;21(2):207-215. doi:10.12991/marupj.277718
Chicago Köse, Özge, Pınar Erkekoğlu, Suna Sabuncuoğlu, and Belma Koçer-gümüşel. “Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods”. Marmara Pharmaceutical Journal 21, no. 2 (May 2017): 207-15. https://doi.org/10.12991/marupj.277718.
EndNote Köse Ö, Erkekoğlu P, Sabuncuoğlu S, Koçer-gümüşel B (May 1, 2017) Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods. Marmara Pharmaceutical Journal 21 2 207–215.
IEEE Ö. Köse, P. Erkekoğlu, S. Sabuncuoğlu, and B. Koçer-gümüşel, “Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods”, J Res Pharm, vol. 21, no. 2, pp. 207–215, 2017, doi: 10.12991/marupj.277718.
ISNAD Köse, Özge et al. “Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods”. Marmara Pharmaceutical Journal 21/2 (May 2017), 207-215. https://doi.org/10.12991/marupj.277718.
JAMA Köse Ö, Erkekoğlu P, Sabuncuoğlu S, Koçer-gümüşel B. Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods. J Res Pharm. 2017;21:207–215.
MLA Köse, Özge et al. “Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods”. Marmara Pharmaceutical Journal, vol. 21, no. 2, 2017, pp. 207-15, doi:10.12991/marupj.277718.
Vancouver Köse Ö, Erkekoğlu P, Sabuncuoğlu S, Koçer-gümüşel B. Phototoxic Effect of Cosmetic Products: Its Mechanism And Alternative Test Methods. J Res Pharm. 2017;21(2):207-15.

.