Research Article
BibTex RIS Cite

Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring

Year 2017, Volume: 21 Issue: 2, 243 - 250, 01.04.2017
https://doi.org/10.12991/marupj.300322

Abstract

Benzothiazole-piperazine derivatives prepared previously, 1h
and 1j are potential anticancer agents. Since the mutagenic
and genotoxic properties of anticancer drugs compose an
essential issue to be researched, this study is focused on
the analysis of the mutagenicity and genotoxicity of these
molecules. The mutagenicity of 1h and 1j were determined by
Ames test performed on Salmonella TA98 and TA100 strains.
Sample 1j was mutagenic on TA98 bacterial strain. However,
compound 1h was not mutagenic in bacterial strains TA98
and TA100 with and without S9 activation. The genotoxicity
of 1h was evaluated by the chromosomal aberration assay on
human lymphocytes. Compound 1h was also not genotoxic
in human lymphocytes in vitro. All results revealed that,
1h was not mutagenic in the two Salmonella strains tested
and was not genotoxic in chromosomal aberration assay.
Therefore, results demonstrate that the described molecule
is promising as a new anticancer drug without mutagenicity.
Also, after performing Ames test with other recommended
bacterial strains and in vivo experiments can be used safely
for the development

References

  • 1. Klaunig JE, Kamendulis LM. Chemical carcinogenesis. In: Casarett & Doull’s Toxicology the Basic Sciences of Poisons. Editor: Klaassen CD. McGraw-Hill Companies, Inc. Philadelphia. 2008, pp.329-379.
  • 2. Lucy H, Golsteyn S, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15: 3403-31.
  • 3. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008; 8: 193–204.
  • 4. Charehsaz M, Onen-Bayram FE, Sipahi H, Buran K, Giri AK, Aydin A. Evaluation of the mutagenic and genotoxic effects of the ALC67 thiazolidine compound in Salmonella strains and human lymphocytes in vitro. Hum Exp Toxicol 2016; 35: 1108–15.
  • 5. Yamazaki K, Kaneko Y, Suwa K, Ebara S, Nakazawa K, Yasuno K. Synthesis of potent and selective inhibitors of Candida albicans N-myristoyltransferase based on the benzothiazole structure. Bioorg Med Chem 2005; 13: 2509-22.
  • 6. Brantley E, Antony S, Kohlhagen G, Meng L, Agama K, Stinson SF, Sausville EA, Pommier Y. Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells. Cancer Chemother Pharmacol 2006; 58: 62-72.
  • 7. Lion CJ, Matthews CS, Wells G, Bradshaw TD, Stevens MF, Westwell AD. Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones Charehsaz et al. (‘quinols’). Bioorg Med Chem Lett 2006; 16: 5005-8.
  • 8. Huang ST, Hsei IJ, Chen C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 2006; 14: 6106-19.
  • 9. Yoshida M, Hayakawa I, Hayashi N, Agatsuma T, Oda Y, Tanzawa F, Iwasaki S, Koyama K, Furukawa H, Kurakata S, Sugano Y. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg Med Chem Lett 2005; 15: 3328-32.
  • 10. Das J, Moquin RV, Lin J, Liu C, Doweyko AM, DeFex HF, Fang Q, Pang S, Pitt S, Shen DR, Schieven GL, Barrish JC, Wityak J. Discovery of 2-amino-heteroaryl-benzothiazole-6-anilides as potent p56(lck) inhibitors. Bioorg Med Chem Lett 2003; 13: 2587-90.
  • 11. Noolvi MN, Patel HM, Kaur M. Benzothiazoles: search for anticancer agents. Eur J Med Chem 2012; 54: 447-62.
  • 12. Gurdal EE, Buclulgan E, Durmaz I, Cetin-Atalay R, Yarim M. Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives. Anticancer Agents Med Chem 2015; 15: 382-9.
  • 13. Blasiak J, Kowalik J. Protective action of vitamin C against DNA damage induced by selenium-cisplatin conjugate. Acta Biochim Pol 2001; 48: 233–40.
  • 14. Danesi CC, Bellagamba BC, Dihl RR. Evaluation of the genotoxicity of cisplatin, paclitaxel and 5-fluorouracil combined treatment in the Drosophila wing-spot test Food Chem Toxicol 2010; 48: 3120–4.
  • 15. Katz AJ. Sodium thiosulfate inhibits cisplatin-induced mutagenesis in somatic tissue of Drosophila. Environ Mol Mutagen 1989; 13: 97–9.
  • 16. Ito S, Murphy CG, Doubrovina E, Jasin M, Moynahan ME. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells. PloS One 2016; 11: 1-14.
  • 17. Cunha KS, Reguly ML, Graf U, De Andrade HH. Taxanes: The genetic toxicity of paclitaxel and docetaxel in somatic cells of Drosophila melanogaster. Mutagenesis 2001; 16: 79–84.
  • 18. Digue L, Orsiere T, De Meo M, Mattéi MG, Depetris D, Duffaud F, Favre R, Botta A. Evaluation of the genotoxic activity of paclitaxel by the in vitro micronucleus test in combination with fluorescent in situ hybridization of a DNA centromeric probe and the alkaline single cell gel electrophoresis technique (comet assay) in human T-lymphocytes. Environ Mol Mutagen 1999; 34: 269–78.
  • 19. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mut Res 1983; 113:173–215.
  • 20. Oğuz S, Omurtag GZ. Arıcıoğlu F, Şardaş S. Mutajenik karsinojenik etkinin Ames testi ile araştırılması. MÜSBED 2013; 3: 75-82.
  • 21. Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mut Res 2000; 455: 29–60.
  • 22. Ames BN, Gurney EG, Miller JA. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci USA 1972; 69: 3128–32.
  • 23. Garner RC, Miller EC, Miller JA. Liver microsomal metabolism of aflatoxin B1 to a reactive derivative toxic to Salmonella typhimurium TA 1530. Cancer Res 1972; 32: 2058–66.
  • 24. Halder B, Pramanick S, Mukhopadhyay S. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols the aflavins and the arubigins in multiple test system. Food Chem Toxicol 2005; 43: 591–7.
  • 25. OECD Test No. 471: Bacterial Reverse Mutation Test. OECD Publishing. 1997; Paris.
  • 26. OECD Test No. 475: Mammalian bone marrow chromosome aberration test. OECD Publishing. 1997; Paris.
  • 27. Chaudhuri S, Ghosh P, Sarma N. Genetic variants associated with arsenic susceptibility: Study of purine nucleoside phosphorylase, arsenic methyltransferase, and glutathione S-transferase omega genes. Environ Health Perspect 2008; 116: 501–5.
  • 28. WHO. Environmental health criteria 46, guidelines for the study of genetic effects. Geneva: WHO. 29–44.
  • 29. Dunnett CW, Crisafio R. The operating characteristics of some official weight variation tests for tablets. J Pharm Pharmacol 1955; 7: 314–27.
  • 30. Yadav PS, Devprakash D, Senthilkumar GP. Benzothiazole: Different methods of synthesis and diverse biological activities. Int J Pharma Sci Drug Res 2011; 3: 1–7.
  • 31. Al-Talib M, Al-Soud YA, Abussaud M. Synthesis and biological evaluation of new benzothiazoles as antimicrobial agents. Arabian J Chem 2016; 9: 926-30.
  • 32. Zhu XY, Etukala JR, Eyunni SV, Setola V, Roth BL, Ablordeppey SY. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants. Eur J Med Chem 2012; 53:124-32.
  • 33. Al-Soud YA, Al-Sa’doni HH, Saeed B, Jaber IH, BeniKhalid MO, Al-Masoudi NA, Abdul-Kadir T, La Colla P, Busonera B, Sanna T, Loddo, R. Synthesis and in vitro antiproliferative activity of new benzothiazole derivatives. Arkivoc 2008; 15: 225-38.
  • 34. Hsu KH, Su BH, Tu YS, Lin OA, Tseng YJ. Mutagenicity in a molecule: Identification of core structural features of mutagenicity using a scaffold analysis. PLoS One 2016; 11:1- 17.
  • 35. Benedict WF, Baker MS, Haroun L, Choi E, Ames BN. Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test. Cancer Research 1977; 37: 2209-13.
  • 36. Clare G. The in vitro mammalian chromosome aberration test. Methods Mol Biol 2012; 817: 69-91.
  • 37. Basu A, Ghosh P, Bhattacharjee A, Patra AR, Bhattacharya S. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium (III)-l-cysteine. Mutagenesis 2015; 30: 509-17.
  • 38. Ghosh P, Roy SS, Chakraborty P, Ghosh S, Bhattacharya S. Effects of organoselenium compound 2-(5-selenocyanatopentyl)- benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: An investigation of the influence of the compound on oxidative stress and antioxidant enzyme system. Biometals 2013; 26: 61-73.
  • 39. Chakraborty P, Roy SS, Sk UH, Bhattacharya S. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res 2011; 45: 177-87.

Piperazin halkası taşıyan benzotiyazol türevlerinin toksikolojik değerlendirilmesi

Year 2017, Volume: 21 Issue: 2, 243 - 250, 01.04.2017
https://doi.org/10.12991/marupj.300322

Abstract

Önceki çalışmalardan elde edilen 1h ve 1j adlı bileşikler

potansiyel antikanser aktiviteye sahiptir. Antikanser

ilaçların mutajenik ve genotoksik özelliklerinin bu ilaçların

araştırılmasında temel konuyu oluşturması sebebiyle, çalışmada

söz konusu moleküllerin mutajenite ve genotoksisite analizleri

üzerinde durulmuştur. 1h ve 1j Moleküllerinin mutajeniteleri

Salmonella TA98 ve TA100 suşları ile Ames testi uygulanarak

belirlenmiştir. 1j Bileşiği TA98 bakteri suşu üzerinde mutajen

bulunmuştur. Ancak, 1h bileşiğinin TA 100 ve TA98 suşları

ile S9 varlığında ve yokluğunda mutajenik aktiviteye sahip

olmadığı gösterilmiştir. 1h Bileşiğinin genotoksisitesi insan

lenfositleri üzerinde yapılan kromozomal aberasyon testi

ile değerlendirilmiş olup genotoksik bir risk oluşturmadığı

saptanmıştır. Bütün sonuçlar değerlendirildiğinde, 1h’nin iki

farklı Salmonella suşu üzerinde yapılan çalışmada mutajenik

aktivitesi olmadığı ve kromozom aberasyon testinde genotoksik

olmadığı saptanmıştır. Bu nedenle, sonuçları belirtilen

molekülün mutajenik ve genotoksik etkileri olmadığı için yeni

bir antikanser ilaç olarak umut verici olduğu görülmüştür.

Güvenle kullanılabilecek antikanser aktivite sergileyen yeni bir

molekülün varlığını göstermek için yukarıdaki analizlere ek

olarak Ames testi tavsiye edilen diğer bakteri suşlarıyla ve in

vivo deneylerle desteklenmelidir.

References

  • 1. Klaunig JE, Kamendulis LM. Chemical carcinogenesis. In: Casarett & Doull’s Toxicology the Basic Sciences of Poisons. Editor: Klaassen CD. McGraw-Hill Companies, Inc. Philadelphia. 2008, pp.329-379.
  • 2. Lucy H, Golsteyn S, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15: 3403-31.
  • 3. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008; 8: 193–204.
  • 4. Charehsaz M, Onen-Bayram FE, Sipahi H, Buran K, Giri AK, Aydin A. Evaluation of the mutagenic and genotoxic effects of the ALC67 thiazolidine compound in Salmonella strains and human lymphocytes in vitro. Hum Exp Toxicol 2016; 35: 1108–15.
  • 5. Yamazaki K, Kaneko Y, Suwa K, Ebara S, Nakazawa K, Yasuno K. Synthesis of potent and selective inhibitors of Candida albicans N-myristoyltransferase based on the benzothiazole structure. Bioorg Med Chem 2005; 13: 2509-22.
  • 6. Brantley E, Antony S, Kohlhagen G, Meng L, Agama K, Stinson SF, Sausville EA, Pommier Y. Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells. Cancer Chemother Pharmacol 2006; 58: 62-72.
  • 7. Lion CJ, Matthews CS, Wells G, Bradshaw TD, Stevens MF, Westwell AD. Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones Charehsaz et al. (‘quinols’). Bioorg Med Chem Lett 2006; 16: 5005-8.
  • 8. Huang ST, Hsei IJ, Chen C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 2006; 14: 6106-19.
  • 9. Yoshida M, Hayakawa I, Hayashi N, Agatsuma T, Oda Y, Tanzawa F, Iwasaki S, Koyama K, Furukawa H, Kurakata S, Sugano Y. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg Med Chem Lett 2005; 15: 3328-32.
  • 10. Das J, Moquin RV, Lin J, Liu C, Doweyko AM, DeFex HF, Fang Q, Pang S, Pitt S, Shen DR, Schieven GL, Barrish JC, Wityak J. Discovery of 2-amino-heteroaryl-benzothiazole-6-anilides as potent p56(lck) inhibitors. Bioorg Med Chem Lett 2003; 13: 2587-90.
  • 11. Noolvi MN, Patel HM, Kaur M. Benzothiazoles: search for anticancer agents. Eur J Med Chem 2012; 54: 447-62.
  • 12. Gurdal EE, Buclulgan E, Durmaz I, Cetin-Atalay R, Yarim M. Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives. Anticancer Agents Med Chem 2015; 15: 382-9.
  • 13. Blasiak J, Kowalik J. Protective action of vitamin C against DNA damage induced by selenium-cisplatin conjugate. Acta Biochim Pol 2001; 48: 233–40.
  • 14. Danesi CC, Bellagamba BC, Dihl RR. Evaluation of the genotoxicity of cisplatin, paclitaxel and 5-fluorouracil combined treatment in the Drosophila wing-spot test Food Chem Toxicol 2010; 48: 3120–4.
  • 15. Katz AJ. Sodium thiosulfate inhibits cisplatin-induced mutagenesis in somatic tissue of Drosophila. Environ Mol Mutagen 1989; 13: 97–9.
  • 16. Ito S, Murphy CG, Doubrovina E, Jasin M, Moynahan ME. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells. PloS One 2016; 11: 1-14.
  • 17. Cunha KS, Reguly ML, Graf U, De Andrade HH. Taxanes: The genetic toxicity of paclitaxel and docetaxel in somatic cells of Drosophila melanogaster. Mutagenesis 2001; 16: 79–84.
  • 18. Digue L, Orsiere T, De Meo M, Mattéi MG, Depetris D, Duffaud F, Favre R, Botta A. Evaluation of the genotoxic activity of paclitaxel by the in vitro micronucleus test in combination with fluorescent in situ hybridization of a DNA centromeric probe and the alkaline single cell gel electrophoresis technique (comet assay) in human T-lymphocytes. Environ Mol Mutagen 1999; 34: 269–78.
  • 19. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mut Res 1983; 113:173–215.
  • 20. Oğuz S, Omurtag GZ. Arıcıoğlu F, Şardaş S. Mutajenik karsinojenik etkinin Ames testi ile araştırılması. MÜSBED 2013; 3: 75-82.
  • 21. Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mut Res 2000; 455: 29–60.
  • 22. Ames BN, Gurney EG, Miller JA. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci USA 1972; 69: 3128–32.
  • 23. Garner RC, Miller EC, Miller JA. Liver microsomal metabolism of aflatoxin B1 to a reactive derivative toxic to Salmonella typhimurium TA 1530. Cancer Res 1972; 32: 2058–66.
  • 24. Halder B, Pramanick S, Mukhopadhyay S. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols the aflavins and the arubigins in multiple test system. Food Chem Toxicol 2005; 43: 591–7.
  • 25. OECD Test No. 471: Bacterial Reverse Mutation Test. OECD Publishing. 1997; Paris.
  • 26. OECD Test No. 475: Mammalian bone marrow chromosome aberration test. OECD Publishing. 1997; Paris.
  • 27. Chaudhuri S, Ghosh P, Sarma N. Genetic variants associated with arsenic susceptibility: Study of purine nucleoside phosphorylase, arsenic methyltransferase, and glutathione S-transferase omega genes. Environ Health Perspect 2008; 116: 501–5.
  • 28. WHO. Environmental health criteria 46, guidelines for the study of genetic effects. Geneva: WHO. 29–44.
  • 29. Dunnett CW, Crisafio R. The operating characteristics of some official weight variation tests for tablets. J Pharm Pharmacol 1955; 7: 314–27.
  • 30. Yadav PS, Devprakash D, Senthilkumar GP. Benzothiazole: Different methods of synthesis and diverse biological activities. Int J Pharma Sci Drug Res 2011; 3: 1–7.
  • 31. Al-Talib M, Al-Soud YA, Abussaud M. Synthesis and biological evaluation of new benzothiazoles as antimicrobial agents. Arabian J Chem 2016; 9: 926-30.
  • 32. Zhu XY, Etukala JR, Eyunni SV, Setola V, Roth BL, Ablordeppey SY. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants. Eur J Med Chem 2012; 53:124-32.
  • 33. Al-Soud YA, Al-Sa’doni HH, Saeed B, Jaber IH, BeniKhalid MO, Al-Masoudi NA, Abdul-Kadir T, La Colla P, Busonera B, Sanna T, Loddo, R. Synthesis and in vitro antiproliferative activity of new benzothiazole derivatives. Arkivoc 2008; 15: 225-38.
  • 34. Hsu KH, Su BH, Tu YS, Lin OA, Tseng YJ. Mutagenicity in a molecule: Identification of core structural features of mutagenicity using a scaffold analysis. PLoS One 2016; 11:1- 17.
  • 35. Benedict WF, Baker MS, Haroun L, Choi E, Ames BN. Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test. Cancer Research 1977; 37: 2209-13.
  • 36. Clare G. The in vitro mammalian chromosome aberration test. Methods Mol Biol 2012; 817: 69-91.
  • 37. Basu A, Ghosh P, Bhattacharjee A, Patra AR, Bhattacharya S. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium (III)-l-cysteine. Mutagenesis 2015; 30: 509-17.
  • 38. Ghosh P, Roy SS, Chakraborty P, Ghosh S, Bhattacharya S. Effects of organoselenium compound 2-(5-selenocyanatopentyl)- benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: An investigation of the influence of the compound on oxidative stress and antioxidant enzyme system. Biometals 2013; 26: 61-73.
  • 39. Chakraborty P, Roy SS, Sk UH, Bhattacharya S. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res 2011; 45: 177-87.
There are 39 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Mohammad Charehsaz This is me

Enise Ece Gürdal This is me

Sinem Helvacıoğlu This is me

Mine Yarım This is me

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Charehsaz, M., Gürdal, E. E., Helvacıoğlu, S., Yarım, M. (2017). Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring. Marmara Pharmaceutical Journal, 21(2), 243-250. https://doi.org/10.12991/marupj.300322
AMA Charehsaz M, Gürdal EE, Helvacıoğlu S, Yarım M. Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring. Marmara Pharm J. May 2017;21(2):243-250. doi:10.12991/marupj.300322
Chicago Charehsaz, Mohammad, Enise Ece Gürdal, Sinem Helvacıoğlu, and Mine Yarım. “Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring”. Marmara Pharmaceutical Journal 21, no. 2 (May 2017): 243-50. https://doi.org/10.12991/marupj.300322.
EndNote Charehsaz M, Gürdal EE, Helvacıoğlu S, Yarım M (May 1, 2017) Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring. Marmara Pharmaceutical Journal 21 2 243–250.
IEEE M. Charehsaz, E. E. Gürdal, S. Helvacıoğlu, and M. Yarım, “Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring”, Marmara Pharm J, vol. 21, no. 2, pp. 243–250, 2017, doi: 10.12991/marupj.300322.
ISNAD Charehsaz, Mohammad et al. “Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring”. Marmara Pharmaceutical Journal 21/2 (May 2017), 243-250. https://doi.org/10.12991/marupj.300322.
JAMA Charehsaz M, Gürdal EE, Helvacıoğlu S, Yarım M. Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring. Marmara Pharm J. 2017;21:243–250.
MLA Charehsaz, Mohammad et al. “Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring”. Marmara Pharmaceutical Journal, vol. 21, no. 2, 2017, pp. 243-50, doi:10.12991/marupj.300322.
Vancouver Charehsaz M, Gürdal EE, Helvacıoğlu S, Yarım M. Toxicological Evaluation of Benzothiazole Derivatives Carrying Piperazine Ring. Marmara Pharm J. 2017;21(2):243-50.