Research Article
BibTex RIS Cite

Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin

Year 2017, Volume: 21 Issue: 2, 330 - 337, 01.05.2017

Abstract

In this study, the stability constants of the copper(II) and
aluminium(III) complexes of quercetin were determined
potentiometrically by using Calvin-Bjerrum and Irwing Rossotti
methods. The protonation constants of quercetin were found:
logK1 = 11.15±0.118, logK2 = 10.42±0.144, logK3 = 9.44±0.162,
logK4 = 8.28±0.151. For copper complex formation constant
was found by Irwing-Rossotti method: logK1 = 19.92±0.367 and
for aluminium complex complex: logK1 = 23.02±0.459. From
the results, the components of quercetin / metal complexes are
given as 1/1 both copper(II) and aluminium(III).
A reversed phase high pressure liquid chromatographic method
was developed for the metal complexes which were prepared
according to potentiometric results with the ratio quercetin /
metal =1/1. Mobile phase was 0.01 M HClO4 / 8.33 x 10-5 M
quercetin in Methanol (40/60), column was XTerra RP18, 5 μm,
4.6 x 150 mm , detector was Diode Array Detector at λ = 373 ve
421 nm (band width 4nm).

References

  • 1. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B,Trinajstic N. SAR and QSAR of the antioxidant activity offlavonoids. Curr Med Chem 2007;14: 827-452.
  • 2. George VC, Dellaire G, Rupasinghe HPV. Plant flavonoidsin cancer chemoprevention: Role in genome stability. J NutrBiochem 2017;45: 1-14.
  • 3. Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R,Lagana A. Flavonoids: Chemical properties and analyticalmethodologies of identification and quantitation in foods andplants. Nat Prod Res 2011;25: 469-95.
  • 4. Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoidsas prospective compounds for anti-cancer therapy. Int JBiochem Cell Biol 2013;45: 2821-31.
  • 5. Spoerlein C, Mahal K, Schmidt H, Schobert R. Effects ofchrysin, apigenin, genistein and their homoleptic copper(II)complexes on the growth and metastatic potential of cancercells. J Inorg Biochem 2013;127: 107-15.
  • 6. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, TomcoD, Dou QP. Novel metals and metal complexes as platformsfor cancer therapy. Curr Pharm Des 2010;16: 1813-25.
  • 7. Kostova I, Balkansky S. Metal complexes of biologically activeligands as potential antioxidants. Curr Med Chem 2013;20:4508-39.
  • 8. Mladenka P, Macakova K, Filipsky T, Zatloukalova L, JahodarL, Bovicelli P, Silvestri IP, Hrdina R, Saso L. In vitro analysisof iron chelating activity of flavonoids. J Inorg Biochem2011;105: 693-701.
  • 9. Samsonowicz M, Regulska E. Spectroscopic study of molecularstructure, antioxidant activity and biological effects of metalhydroxyflavonol complexes. Spectrochim Acta A Mol BiomolSpectrosc 2017;173: 757-71.
  • 10. Jabeen E, Janjua NK, Ahmed S, Murtaza I, Ali T, HameedS. Radical scavenging propensity of Cu2+, Fe3+ complexes offlavonoids and in-vivo radical scavenging by Fe3+-primuletin.Spectrochim Acta A Mol Biomol Spectrosc 2017;171: 432-8.
  • 11. de Souza RFV, De Giovani WF. Antioxidant properties ofcomplexes of flavonoids with metal ions. Redox Rep 2004;9:97-104.
  • 12. Cornard JP, Merlin JC. Spectroscopic and structural study ofcomplexes of quercetin with Al(III). J Inorg Biochem 2002;92:19-27.
  • 13. Fernandez MT, Mira ML, Florencio MH, Jennings KR. Ironand copper chelation by flavonoids: An electrospray massspectrometry study. J Inorg Biochem 2002;92:105-11.
  • 14. Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS.Synthesis, characterization and biological evaluation ofRutin-zinc(II) flavonoid -metal complex. Chem Biol Interact2015;239: 184-91.
  • 15. Petkovic M, Petrovic B, Savic J, Bugarcic ZD, Dimitric-Markovic J, Momic T, Vasic V. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metalcomplexes. Int J Mass Spectrom 2010;290: 39-46.
  • 16. Lian H-Z, Kang Y-F, Yasin A, Bi S-P, Shao D-L, Chen Y-J, DaiL-M, Tian L-C. Determination of aluminum in environmentaland biological samples by reversed-phase high-performanceliquid chromatography via pre-column complexation withmorin. J Chromatogr A 2003;993: 179-85.
  • 17. Timerbaev AR, Tsoi IG, Petrukhin OM. Mathematicalsimulation of complex chromatographic systems: A simulationmodel of reversed-phase liquid chromatography of metalchelates. Anal Chim Acta 1992;269: 229-38.
  • 18. Irving, H. M., Rossotti, H. S. Methods for computing successivestability constants from experimental formation curves. JChem Soc 1953; 3397-3405.
  • 19. Irving, H. M., Rossotti, H. S. The calculation of formationcurves of metal complexes from pH-titration curves in mixedsolvents. J Chem Soc 1954; 2904-10.
  • 20. Dilli S, Haddad PR, Htoon AK. Further studies ofdiethyldithiocarbamate complexes by high-performanceliquid chromatography. J Chromatogr, 1990;500: 313-28.

Kuersetinin Cu(II) ve Al(III) Komplekslerinin Potansiyometrik ve Kromatografik İncelenmesi

Year 2017, Volume: 21 Issue: 2, 330 - 337, 01.05.2017

Abstract

Bu çalışmada, Kuersetinin bakır(II) ve alüminyum(III) ile

oluşturduğu komplekslerin kararlılık sabitleri Calvin-Bjerrum

ve Irwing-Rossotti yöntemleri kullanılarak potansiyometrik

yoldan tayin edildi. Kuersetin dissosiyasyon sabitleri

potansiyometrik yöntemle logK1 = 11.15±0.118, logK2 =

10.42±0.144, logK3 = 9.44±0.162, logK4 = 8.28±0.151 olarak

bulundu. Yine potansiyometrik olarak Irwing-Rossotti oluşum

sabitleri ise bakır(II) için logK1 = 19.92±0.367, alüminyum(III)

için logK1 = 23.02±0.459 olarak bulundu. Bakır(II) ve

alüminyum(III) komplekslerinin bileşimleri ligand/metal = 1/1

olarak bulundu.

Potansiyometrik sonuçlara dayanarak kuersetin/metal = 1/1

oranıyla hazırlanan kompleksler için ters fazlı yüksek basınçlı

sıvı kromatografisi ile tayin yöntemi gerçekleştirildi. Çalışmada

hareketli faz olarak 0.01 M HClO4 / 8.33 x 10-5 M Kuersetin

çözeltisi (Metanolde) (40/60), XTerra RP18, 5 μm, 4.6 x 150

mm özellikte kolon, λ = 373 ve 421 nm (bant genişliği 4nm)

kullanıldı.

References

  • 1. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B,Trinajstic N. SAR and QSAR of the antioxidant activity offlavonoids. Curr Med Chem 2007;14: 827-452.
  • 2. George VC, Dellaire G, Rupasinghe HPV. Plant flavonoidsin cancer chemoprevention: Role in genome stability. J NutrBiochem 2017;45: 1-14.
  • 3. Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R,Lagana A. Flavonoids: Chemical properties and analyticalmethodologies of identification and quantitation in foods andplants. Nat Prod Res 2011;25: 469-95.
  • 4. Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoidsas prospective compounds for anti-cancer therapy. Int JBiochem Cell Biol 2013;45: 2821-31.
  • 5. Spoerlein C, Mahal K, Schmidt H, Schobert R. Effects ofchrysin, apigenin, genistein and their homoleptic copper(II)complexes on the growth and metastatic potential of cancercells. J Inorg Biochem 2013;127: 107-15.
  • 6. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, TomcoD, Dou QP. Novel metals and metal complexes as platformsfor cancer therapy. Curr Pharm Des 2010;16: 1813-25.
  • 7. Kostova I, Balkansky S. Metal complexes of biologically activeligands as potential antioxidants. Curr Med Chem 2013;20:4508-39.
  • 8. Mladenka P, Macakova K, Filipsky T, Zatloukalova L, JahodarL, Bovicelli P, Silvestri IP, Hrdina R, Saso L. In vitro analysisof iron chelating activity of flavonoids. J Inorg Biochem2011;105: 693-701.
  • 9. Samsonowicz M, Regulska E. Spectroscopic study of molecularstructure, antioxidant activity and biological effects of metalhydroxyflavonol complexes. Spectrochim Acta A Mol BiomolSpectrosc 2017;173: 757-71.
  • 10. Jabeen E, Janjua NK, Ahmed S, Murtaza I, Ali T, HameedS. Radical scavenging propensity of Cu2+, Fe3+ complexes offlavonoids and in-vivo radical scavenging by Fe3+-primuletin.Spectrochim Acta A Mol Biomol Spectrosc 2017;171: 432-8.
  • 11. de Souza RFV, De Giovani WF. Antioxidant properties ofcomplexes of flavonoids with metal ions. Redox Rep 2004;9:97-104.
  • 12. Cornard JP, Merlin JC. Spectroscopic and structural study ofcomplexes of quercetin with Al(III). J Inorg Biochem 2002;92:19-27.
  • 13. Fernandez MT, Mira ML, Florencio MH, Jennings KR. Ironand copper chelation by flavonoids: An electrospray massspectrometry study. J Inorg Biochem 2002;92:105-11.
  • 14. Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS.Synthesis, characterization and biological evaluation ofRutin-zinc(II) flavonoid -metal complex. Chem Biol Interact2015;239: 184-91.
  • 15. Petkovic M, Petrovic B, Savic J, Bugarcic ZD, Dimitric-Markovic J, Momic T, Vasic V. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metalcomplexes. Int J Mass Spectrom 2010;290: 39-46.
  • 16. Lian H-Z, Kang Y-F, Yasin A, Bi S-P, Shao D-L, Chen Y-J, DaiL-M, Tian L-C. Determination of aluminum in environmentaland biological samples by reversed-phase high-performanceliquid chromatography via pre-column complexation withmorin. J Chromatogr A 2003;993: 179-85.
  • 17. Timerbaev AR, Tsoi IG, Petrukhin OM. Mathematicalsimulation of complex chromatographic systems: A simulationmodel of reversed-phase liquid chromatography of metalchelates. Anal Chim Acta 1992;269: 229-38.
  • 18. Irving, H. M., Rossotti, H. S. Methods for computing successivestability constants from experimental formation curves. JChem Soc 1953; 3397-3405.
  • 19. Irving, H. M., Rossotti, H. S. The calculation of formationcurves of metal complexes from pH-titration curves in mixedsolvents. J Chem Soc 1954; 2904-10.
  • 20. Dilli S, Haddad PR, Htoon AK. Further studies ofdiethyldithiocarbamate complexes by high-performanceliquid chromatography. J Chromatogr, 1990;500: 313-28.
There are 20 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Deniz Çıkla Yılmaz This is me

Mürşit Pekin This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Çıkla Yılmaz, D., & Pekin, M. (2017). Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin. Marmara Pharmaceutical Journal, 21(2), 330-337.
AMA Çıkla Yılmaz D, Pekin M. Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin. Marmara Pharm J. May 2017;21(2):330-337.
Chicago Çıkla Yılmaz, Deniz, and Mürşit Pekin. “Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin”. Marmara Pharmaceutical Journal 21, no. 2 (May 2017): 330-37.
EndNote Çıkla Yılmaz D, Pekin M (May 1, 2017) Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin. Marmara Pharmaceutical Journal 21 2 330–337.
IEEE D. Çıkla Yılmaz and M. Pekin, “Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin”, Marmara Pharm J, vol. 21, no. 2, pp. 330–337, 2017.
ISNAD Çıkla Yılmaz, Deniz - Pekin, Mürşit. “Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin”. Marmara Pharmaceutical Journal 21/2 (May 2017), 330-337.
JAMA Çıkla Yılmaz D, Pekin M. Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin. Marmara Pharm J. 2017;21:330–337.
MLA Çıkla Yılmaz, Deniz and Mürşit Pekin. “Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin”. Marmara Pharmaceutical Journal, vol. 21, no. 2, 2017, pp. 330-7.
Vancouver Çıkla Yılmaz D, Pekin M. Potentiometric and Chromatographic Study of Cu(II) and Al(III) Complexes of Quercetin. Marmara Pharm J. 2017;21(2):330-7.