Research Article
BibTex RIS Cite

Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles

Year 2017, Volume: 21 Issue: 3, 537 - 543, 20.06.2017
https://doi.org/10.12991/marupj.318619

Abstract

Cobalt oxide (Co3O4) nanoparticles have been extensively
used in various industrial and medical applications due to
their special optical, magnetic, and electrical activity features.
However, there is a lack of information about their toxicity
and adverse effects on human health, especially concerning
the kidney, which is considered to be a secondary target organ.
We investigated the toxic potentials of Co3O4 nanoparticles
on NRK-52E kidney epithelial cells by in vitro assays. Co3O4
nanoparticles were taken up by the kidney cells, and caused a
decrease in cell viability, by significantly inducing apoptosis/
necrosis at 100 μg/mL. However, no significant DNA damage
was observed. Co3O4 nanoparticles induced cellular toxicity in
kidney cells. These results should raise concern about the safety
of Co3O4 nanoparticles in their various applications. Further
studies are needed to elucidate their toxic mechanism.

References

  • 1. Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 2010; 20: 324-30. 2. Kim YJ, Yu M, Park HO, Yang SI. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 2010; 6: 337-44. 3. Filon LF, Crosera M, Timeus E, Adami G, Bovenzi M, Ponti J, Maina G. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol Vitro 2013; 27: 121-7. 4. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 2012; 258: 151-65. 5. Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 2013; 32: 296-307. 6. Alinovi R, Goldoni M, Pinelli S, Campanini M, Aliatis I, Bersani D, Lottici PP, Iavicoli S, Petyx M, Mozzoni P, Mutti A. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol Vitro 2015; 29: 426-37. 7. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cobalt. Atlanta, GA: U.S. Department of Health and Human Services. [The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for cobalt]. 8. Kumagai S, Kusaka Y, Goto S. Cobalt exposure level and variability in the hard metal industry of Japan. Am Ind Hyg Assoc J 1996; 57: 365-9. 9. Kraus T, Schramel P, Schaller KH, Zöbelein P, Weber A, Angerer J.Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occup Environ Med 2001; 58: 631-4. 10. ACGIH. Threshold limits value for chemical substances and physical agents and biological exposure indices. Cincinnati: American Conference of Governmental Industrial Hygienists, 2015. 11. Linnainmaa M, Kangas J, Kalliokoski P. Exposure to airborne metals in the manufacture and maintenance of hard metal and stellite blades. Am Ind Hyg Assoc J 1996; 57: 196-201. 12. IARC. 2001. Some internally deposited radionuclides. International Agency for Research on Cancer. http://193.51.164.11/htdocs/Monographs/Vol78/Vol78- radionuclides.html. June 7, 2001. 13. Johansson A, Curstedt T, Camner P. 1991. Lung lesions after combined inhalation of cobalt and nickel. Environ Res 1991; 54: 24-38. 14. Wehner AP, Busch RH, Olson RJ, Craig DK. Chronic inhalation of cobalt oxide and cigarette smoke by hamsters. Am Ind Hyg Assoc J 1997; 38: 338-46. 15. Palmes ED, Nelson N, Laskin S, Kuschner M. Inhalation toxicity of cobalt hydrocarbonyl. Am Ind Hyg Assoc J 1959; 20: 453-68. 16. Coombs, M. Biological monitoring of cobalt oxide workers. Int Arch Occup Environ Health 1996; 68: 511-2. 17. Al Samri MT, Silva R, Almarzooqi S, Albawardi A, Othman ARD, Al Hanjeri RSMS, Al Dawaar SKM, Tariq S, Souid AK, Asefa T. Lung toxicities of core-shell nanoparticles composed of carbon, cobalt, and silica. Int J Nanomedicine 2013; 8: 1223- 44. 18. Ortega R, Bresson C, Darolles C, Gautier C, Roudeau S, Perrin L, Janin M, Floriani M, Aloin V, Carmona A, Malard V. Lowsolubility particles and a Trojanhorse type mechanism of toxicity: the case of cobalt oxide on human lung cells. Part Fibre Toxicol 2014; 11:14. 19. Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernardini G, Gornati R. Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 2009; 189: 253-9. 20. Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Qiu Yuwen, Zhiying H. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomedicine 2015; 10: 1-22. 21. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Miqliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 2008; 23: 377-82. 22. Ponti J, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 2009; 24: 439-45. 23. Busch W, Kühnel D, Schirmer K, Scholz S, Schirmer K. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics 2010; 11: 65. 24. Chattopadhyay S, Dash SK, Tripathy S, Das B, Mahapatra SK, Pramanik P, Roy S. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α /caspase-8/ p38-MAPK signaling in human leukemia cells. J Appl Toxicol 2015; 35: 603-13. 25. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, Di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, Costantini R, Di Gioacchino M. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol 2006; 19: 11-4. 26. Klasson M, Bryngelsson IL, Petterson C, Husby B, Arvidsson H, Westberg H. Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area. Ann Occup Hyg 2016; 60(6): 684-99. 27. Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Golla-Schindler U, Sommer D, Uboldi C, Unger RE, Villiers C. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci 2011; 122: 489- 501. 28. Chattopadhyay S, Dash SK, Tripathy S, Das B, Mandal D, Pramanik P, Roy S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact 2015; 226: 58-71. 29. Abudayyak M, Altıncekic T, Özhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol Trace Elem Res 2017; 175: 458-65 . 30. Abudayyak M, Guzel EE, Özhan G. Copper (II) oxide nanoparticles induced nephrotoxicity in vitro conditions. Appl Vitro Toxicol 2016; 2: 157-64. 31. Uzar NK, Abudayyak M, Akcay N, Algun G, Özhan G. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Toxicol Mech Methods 2015; 25: 334-9. 32. Van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011; 731: 237-45. 33. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008; 3: 1125-31. 34. Speit G, Hartmann A. The comet assay (single-cell gel test): a sensitive genotoxicity test for the detection of DNA damage and repair. DNA Repair Protocols 1999; 113: 203-12. 35. Spigoni V, Cito M, Alinovi R, Pinelli S, Passeri G, Zavaroni I, Goldoni M, Campanini M, Aliatis I, Mutti A, Bonadonna RC, Cas AD. Effects of TiO2 and Co3O4 nanoparticles on circulating angiogenic cells. PLoS One 2015; 10: e0119310. 36. Rajiv S, Jerobin J, Saranya V, Nainawat NM, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human Exp Toxicol 2015; 35: 170-83. 37. Jasmin G, Riopelle JL. Renal carcinomas and erythrocytosis in rats following intrarenal injection of nickel subsulfide. Laboratory Investigations 1976; 35: 71-8. 38. Kasprzak KS, Zastawny TH, North SL, Riggs CW, Diwan BA, Rice JM, Dizdaroglu M. Oxidative DNA base damage in renal, hepatic, and pulmonary chromatin of rats after intraperitoneal injection of cobalt(II) acetate. Chem Res Toxicol 1994; 7: 329- 35.

Kobalt Oksit Nanopartiküllerine Maruz Bırakılan Böbrek Hücrelerindeki Hücresel Cevabın Değerlendirilmesi

Year 2017, Volume: 21 Issue: 3, 537 - 543, 20.06.2017
https://doi.org/10.12991/marupj.318619

Abstract

Kobalt oksit (Co3O4) nanopartikülleri spesifik optik, magnetik
ve elektriksel aktivite özelliklerinden dolayı çeşitli endüstriyel ve
medikal alanda geniş ölçüde kullanılmaktadır. Ancak, özellikle
sekonder hedef organ olarak değerlendirilen böbreklerdeki
etkiler göz önüne alındığında toksik ve advers etkileri açısından
literatürde yeteri kadar bilgi mevcut değildir. Bu sebeple; Co3O4
nanopartiküllerinin NRK-52E böbrek epitel hücreleri üzerinde
toksik potansiyelini in vitro şartlarda araştırdık. Böbrek
hücreleri tarafından alınan Co3O4 nanopartiküllerinin 100 μg/
mL maruziyet konsantrasyonunda anlamlı düzeyde apoptoz ve
nekrozu indükleyerek hücre canlılığında azalmaya sebep olduğu
gözlendi. Buna karşılık, DNA’da hasara yol açmadığı tespit
edildi. Elde edilen sonuçlara göre; Co3O4 nanopartiküllerinin
böbrek hücrelerinde hücresel toksisiteyi indüklemesi çeşitli
alanlardaki kullanımlarında Co3O4 nanopartiküllerinin
güvenliliğine temkinli yaklaşılması uygun olacaktır. Ancak, ileri
çalışmalar ile toksik etki mekanizmalarının detaylı araştırılması
gerekmektedir.

References

  • 1. Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 2010; 20: 324-30. 2. Kim YJ, Yu M, Park HO, Yang SI. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 2010; 6: 337-44. 3. Filon LF, Crosera M, Timeus E, Adami G, Bovenzi M, Ponti J, Maina G. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol Vitro 2013; 27: 121-7. 4. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 2012; 258: 151-65. 5. Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 2013; 32: 296-307. 6. Alinovi R, Goldoni M, Pinelli S, Campanini M, Aliatis I, Bersani D, Lottici PP, Iavicoli S, Petyx M, Mozzoni P, Mutti A. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol Vitro 2015; 29: 426-37. 7. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cobalt. Atlanta, GA: U.S. Department of Health and Human Services. [The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for cobalt]. 8. Kumagai S, Kusaka Y, Goto S. Cobalt exposure level and variability in the hard metal industry of Japan. Am Ind Hyg Assoc J 1996; 57: 365-9. 9. Kraus T, Schramel P, Schaller KH, Zöbelein P, Weber A, Angerer J.Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occup Environ Med 2001; 58: 631-4. 10. ACGIH. Threshold limits value for chemical substances and physical agents and biological exposure indices. Cincinnati: American Conference of Governmental Industrial Hygienists, 2015. 11. Linnainmaa M, Kangas J, Kalliokoski P. Exposure to airborne metals in the manufacture and maintenance of hard metal and stellite blades. Am Ind Hyg Assoc J 1996; 57: 196-201. 12. IARC. 2001. Some internally deposited radionuclides. International Agency for Research on Cancer. http://193.51.164.11/htdocs/Monographs/Vol78/Vol78- radionuclides.html. June 7, 2001. 13. Johansson A, Curstedt T, Camner P. 1991. Lung lesions after combined inhalation of cobalt and nickel. Environ Res 1991; 54: 24-38. 14. Wehner AP, Busch RH, Olson RJ, Craig DK. Chronic inhalation of cobalt oxide and cigarette smoke by hamsters. Am Ind Hyg Assoc J 1997; 38: 338-46. 15. Palmes ED, Nelson N, Laskin S, Kuschner M. Inhalation toxicity of cobalt hydrocarbonyl. Am Ind Hyg Assoc J 1959; 20: 453-68. 16. Coombs, M. Biological monitoring of cobalt oxide workers. Int Arch Occup Environ Health 1996; 68: 511-2. 17. Al Samri MT, Silva R, Almarzooqi S, Albawardi A, Othman ARD, Al Hanjeri RSMS, Al Dawaar SKM, Tariq S, Souid AK, Asefa T. Lung toxicities of core-shell nanoparticles composed of carbon, cobalt, and silica. Int J Nanomedicine 2013; 8: 1223- 44. 18. Ortega R, Bresson C, Darolles C, Gautier C, Roudeau S, Perrin L, Janin M, Floriani M, Aloin V, Carmona A, Malard V. Lowsolubility particles and a Trojanhorse type mechanism of toxicity: the case of cobalt oxide on human lung cells. Part Fibre Toxicol 2014; 11:14. 19. Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernardini G, Gornati R. Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 2009; 189: 253-9. 20. Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Qiu Yuwen, Zhiying H. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomedicine 2015; 10: 1-22. 21. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Miqliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 2008; 23: 377-82. 22. Ponti J, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 2009; 24: 439-45. 23. Busch W, Kühnel D, Schirmer K, Scholz S, Schirmer K. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics 2010; 11: 65. 24. Chattopadhyay S, Dash SK, Tripathy S, Das B, Mahapatra SK, Pramanik P, Roy S. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α /caspase-8/ p38-MAPK signaling in human leukemia cells. J Appl Toxicol 2015; 35: 603-13. 25. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, Di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, Costantini R, Di Gioacchino M. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol 2006; 19: 11-4. 26. Klasson M, Bryngelsson IL, Petterson C, Husby B, Arvidsson H, Westberg H. Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area. Ann Occup Hyg 2016; 60(6): 684-99. 27. Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Golla-Schindler U, Sommer D, Uboldi C, Unger RE, Villiers C. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci 2011; 122: 489- 501. 28. Chattopadhyay S, Dash SK, Tripathy S, Das B, Mandal D, Pramanik P, Roy S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact 2015; 226: 58-71. 29. Abudayyak M, Altıncekic T, Özhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol Trace Elem Res 2017; 175: 458-65 . 30. Abudayyak M, Guzel EE, Özhan G. Copper (II) oxide nanoparticles induced nephrotoxicity in vitro conditions. Appl Vitro Toxicol 2016; 2: 157-64. 31. Uzar NK, Abudayyak M, Akcay N, Algun G, Özhan G. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Toxicol Mech Methods 2015; 25: 334-9. 32. Van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011; 731: 237-45. 33. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008; 3: 1125-31. 34. Speit G, Hartmann A. The comet assay (single-cell gel test): a sensitive genotoxicity test for the detection of DNA damage and repair. DNA Repair Protocols 1999; 113: 203-12. 35. Spigoni V, Cito M, Alinovi R, Pinelli S, Passeri G, Zavaroni I, Goldoni M, Campanini M, Aliatis I, Mutti A, Bonadonna RC, Cas AD. Effects of TiO2 and Co3O4 nanoparticles on circulating angiogenic cells. PLoS One 2015; 10: e0119310. 36. Rajiv S, Jerobin J, Saranya V, Nainawat NM, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human Exp Toxicol 2015; 35: 170-83. 37. Jasmin G, Riopelle JL. Renal carcinomas and erythrocytosis in rats following intrarenal injection of nickel subsulfide. Laboratory Investigations 1976; 35: 71-8. 38. Kasprzak KS, Zastawny TH, North SL, Riggs CW, Diwan BA, Rice JM, Dizdaroglu M. Oxidative DNA base damage in renal, hepatic, and pulmonary chromatin of rats after intraperitoneal injection of cobalt(II) acetate. Chem Res Toxicol 1994; 7: 329- 35.
There are 1 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Mahmoud Abudayyak This is me

Tuba Altınçekiç Gürkaynak This is me

Gül Özhan

Publication Date June 20, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Abudayyak, M., Altınçekiç Gürkaynak, T., & Özhan, G. (2017). Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles. Marmara Pharmaceutical Journal, 21(3), 537-543. https://doi.org/10.12991/marupj.318619
AMA Abudayyak M, Altınçekiç Gürkaynak T, Özhan G. Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles. Marmara Pharm J. June 2017;21(3):537-543. doi:10.12991/marupj.318619
Chicago Abudayyak, Mahmoud, Tuba Altınçekiç Gürkaynak, and Gül Özhan. “Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles”. Marmara Pharmaceutical Journal 21, no. 3 (June 2017): 537-43. https://doi.org/10.12991/marupj.318619.
EndNote Abudayyak M, Altınçekiç Gürkaynak T, Özhan G (June 1, 2017) Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles. Marmara Pharmaceutical Journal 21 3 537–543.
IEEE M. Abudayyak, T. Altınçekiç Gürkaynak, and G. Özhan, “Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles”, Marmara Pharm J, vol. 21, no. 3, pp. 537–543, 2017, doi: 10.12991/marupj.318619.
ISNAD Abudayyak, Mahmoud et al. “Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles”. Marmara Pharmaceutical Journal 21/3 (June 2017), 537-543. https://doi.org/10.12991/marupj.318619.
JAMA Abudayyak M, Altınçekiç Gürkaynak T, Özhan G. Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles. Marmara Pharm J. 2017;21:537–543.
MLA Abudayyak, Mahmoud et al. “Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles”. Marmara Pharmaceutical Journal, vol. 21, no. 3, 2017, pp. 537-43, doi:10.12991/marupj.318619.
Vancouver Abudayyak M, Altınçekiç Gürkaynak T, Özhan G. Assessment of Cellular Responses in Kidney Cells Exposed to Cobalt Oxide Nanoparticles. Marmara Pharm J. 2017;21(3):537-43.