Research Article
BibTex RIS Cite

Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations

Year 2017, Volume: 21 Issue: 3, 612 - 619, 23.06.2017
https://doi.org/10.12991/marupj.323289

Abstract

The current study was framed with a view to develop a
simple, sensitive and a rapid RP-TLC/Densitometry method
for quantification of Triclosan (TCS) in various cosmetic
preparations available in local market. Moreover, robustness
testing was planned to be performed employing Central
Composite Design (CCD). The desired chromatographic
separation was achieved on RP-TLC/Densitometry plates
precoated with Silica gel 60 GF254 on Aluminum sheet,
employing methanol : glacial acetic acid as mobile phase in
the ratio of 7 : 3 v/v and detection was carried out at 281 nm.
The mobile phase used gave an excellent symmetrical peak for
TCS. The method was found linear over a wide range of 20-140
ng/band. The optimized method was validated by measuring
various validation parameters. CCD was employed to check the
robustness of the method at three-factor levels. The developed
and optimized method was used to quantify TCS in 20 different
cosmetic preparations procured from local market. The
proposed and developed RP-TLC/Densitometry method can
be applied for routine analysis of TCS in cosmetic preparations
and can also be extended to the analysis in pharmaceuticals and
food products.

References

  • 1. Laurie MG. FDA bans common ingredients in antibacterial soaps and body washes. 2016. Available at; https://www. washingtonpost.com/news/to-your-health/wp/2016/09/02/ fda-bans-some-antibacterial-soaps-and-body-washes/?utm_ term=.9db49f1663da
  • 2. Russell AD. Whither triclosan? J Antimicrob Chemother 2004; 53: 693–5.
  • 3. Allmyr M, Harden F, Toms LM, Mueller JF, McLachlan MS, Adolfsson-Erici M, Sandborgh-Englund G. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci Total Environ 2008; 393: 162-7.
  • 4. Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar Environ Res 2000; 50: 153-6.
  • 5. Matsumura N, Ishibashi H, Hirano M, Nagao Y, Watanabe N, Shiratsuchi H, Kai T, Nishimura T, Kashiwagi A, Arizono K. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol Pharm Bull 2005; 28: 1748-51.
  • 6. Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, Lasley B, Pessah IN, Kültz D, Chang DP, Gee SJ, Hammock BD. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environ Health Perspect 2008; 116: 1203-10.
  • 7. Jung EM, An BS, Choi KC, Jeung EB. Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicol Lett 2012; 208: 142-8.
  • 8. Kaul N, Agrawal H, Paradkar AR, Mahadik KR. HPTLC method for determination of nevirapine in pharmaceutical dosage form. Talanta 2004; 62: 843–52.
  • 9. Swarbrick J. Encyclopedia of Pharmaceutical technology, 1st edition, volme 1. Informa Healthcare Inc, London, UK. 2007, pp 2452–2467.
  • 10. Cabaleiro N, Pena-Pereira F, de la Calle I, Bendicho C, Lavilla I. Determination of TCS by cuvetteless UV–VIS microspectrophotometry following simultaneous ultrasound assisted emulsification–microextraction with derivatization: Use of a micellar-ionic liquid as extractant. Microchem J 2011; 99: 246–51.
  • 11. Liu T, Wu D. High-performance liquid chromatographic determination of TCS and triclocarban in cosmetic products. Int J Cos Sci 2012; 34: 489-94.
  • 12. Xie S, Deng H, Xiang B, Xiang S. Detection of trace triclocarban in water sample using solid-phase extraction−liquid chromatography with stochastic resonance algorithm. Environ Sci Technol 2008; 42: 2988–91.
  • 13. Guo JH, Li XH, Cao XL, Li Y, Wang XZ, Xu XB. Determination of TCS, triclocarban and methyl-TCS in aqueous samples by dispersive liquid–liquid microextraction combined with rapid liquid chromatography. J Chromatogr A 2009; 1216: 3038–43.
  • 14. Baranowska I, Magiera S, Bortniczuk K. Reverse-phase HPLC method for the simultaneous analysis of TCS and triclocarban in surface waters. Water Sci Technol: Water Supply 2010; 10: 173-80.
  • 15. Scalia S, Guarneri M, Menegatti E. Assay of TCS in deodorant sticks and soaps by supercritical fluid extraction and HPLC. J Soc Cos Chem 1994; 45: 35-42.
  • 16. Verma Kusum S, Kang X. Analysis of TCS and Triclocarban in soil and biosolids using molecularly ımprinted solid phase extraction coupled with HPLC-UV. J AOAC Int 2010; 93: 1313-21.
  • 17. Liu Y, Song QJ, Wang L. Development and characterization of an amperometric sensor for TCS detection based on electropolymerized molecularly imprinted polymer. Microchem J 2009; 91: 222-6.
  • 18. Yan H, Wang H, Qin X, Liu B, Du J. Ultrasound-assisted dispersive liquid–liquid micro-extraction for determination of fluoroquinolones in pharmaceutical wastewater. J Pharm Biomed Anal 2011; 54: 53–7.
  • 19. Shen JY, Chang MS, Yang SH, Wu GJ. Simultaneous and rapid determination of TCS, triclocarban and their four related transformation products in water samples using SPMEHPLC- DAD. J Liq Chromatogr Related Technol 2012; 35: 2280-93.
  • 20. Kim JW, Ramaswamy BR, Chang KH, Isobe T, Tanabe S. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2011; 1218: 3511–20.
  • 21. Hong Guo J, Hong Li X, Cao XL, Qu L, Hou DK, Xu XB. Temperature-controlled ionic liquid dispersive liquid phase microextraction combined with ultra-high-pressure liquid chromatography for the rapid determination of TCS, triclocarban and methyl-TCS in aqueous samples. Sci China Chem 2010; 53: 2600–27.
  • 22. Gonzalez-Marino I, Quintana JB, Rodriguez I, Cela R. Simultaneous determination of parabens, TCS and triclocarban in water by liquid chromatography / electrospray ionisation tandem mass spectrometry. J Sep Sci 2009; 23: 1756–66.
  • 23. Asimakopoulosa AG, Wang L, Thomaidis NS, Kannan K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, TCS, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2014; 1324: 141–8.
  • 24. Sun J, Yi CL, Zhao RS, Wang X, Jiang WQ, Wang XK. Determination of trace TCS in environmental water by microporous bamboo-activated charcoal solid-phase extraction combined with HPLC-ESI-MS. J Sep Sci 2012; 35: 2781–6.
  • 25. Quintana JB, Reemtsma T. Sensitive determination of acidic drugs and TCS in surface and wastewater by ion-pair reversephase liquid chromatography/tandem mass spectrometry. Rapid Comm Mass Spect 2004; 18: 765-74.
  • 26. Zhao RS, Wang X, Sun J, Wang SS, Yuan JP, Wang XK. Trace determination of TCS and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC–ESI-MS–MS. Anal Bioanal Chem 2010; 397: 1627–33.
  • 27. Shi Y, Liu X, Zhanga J, Shao B. Analysis of TCS and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. J Chromatogr B 2013; 934: 97-101.
  • 28. Yi CL, Guo WL, Wang XK. Simultaneous determination of triclocarban and TCS in environmental water by using SPE combined with HPLC-ESI-MS. Adv Mat Res 2013; 610:268- 71.
  • 29. Zhao RS, Wang X, Sun J, Hu C, Wang XK. Determination of TCS and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchim Acta 2011; 174: 145-51.
  • 30. Zhao RS, Wang X, Sun J, Yuan JP, Wang SS, Wang XK. Temperature-controlled ionic liquid dispersive liquid-phase microextraction for the sensitive determination of TCS and triclocarban in environmental water samples prior to HPLCESI- MS/MS. Microchim Acta 2010; 33: 1842-8.
  • 31. Zhao RS, Wang X, Sun J, Hu C, Wang XK. Simultaneous determination of TCS, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS. J Sep Sci 2011; 35: 2544–52.
  • 32. Chu S, Metcalfe CD. Simultaneous determination of triclocarban and TCS in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 2007; 1164: 212–8.
  • 33. Sanchez-Brunete C, Miguel E, Albero B, Tadeo JL. Determination of TCS and methyl TCS in environmental solid samples by matrix solid-phase dispersion and gas chromatography-mass spectrometry. J Sep Sci 2010; 33: 2768– 75.
  • 34. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 2008; 1190: 253–62.

Kozmetik preparatların içeriğinde bulunan triklosanın tayini amacıyla güvenilir bir ters faz-ince tabaka kromatografisi/ densitometri yöntemi geliştirmek için merkezi bileşik tasarımın uygulanması

Year 2017, Volume: 21 Issue: 3, 612 - 619, 23.06.2017
https://doi.org/10.12991/marupj.323289

Abstract

Bu çalışmada, satışa sunulmuş kozmetik ürünlerde triklosan’ın
(TCS) miktar tayini amacıyla kullanıacak basit, hızlı ve duyarlı
bir ters faz-ince tabaka kromatografisi/densitometri yöntemi
geliştirildi. Geliştirilen yönteme ek olarak elde edilen sistemin
sağlamlığının kanıtlanması için yapılan analizlerde merkezi
bileşik tasarım (CCD) yöntemi uygulandı. Kromatografik ayrım
için silika jel 60 GF254 kaplı, ters faz-ince tabaka kromatografisi/
densitometri yöntemi için üretilmiş alüminyum plaklar ve
metanol : buzlu asetik 7:3 h/h karışımından oluşan hareketli
faz kullanıldı, deteksiyon dalga boyu 281 nm olarak belirlendi.
Kullanılan hareketli faz TCS için mükemmel simetriye sahip
piklerin elde edilmesini sağladı. Yöntem; 2 - 200 ng/band
gibi geniş bir aralık için doğrusal olarak tespit edildi. Birçok
validasyon parametresi incelenerek yöntem en iyi hale getirildi.
Sistemin sağlamlığının kontrolü için üç-faktör düzeyinde CCD
yöntemi kullanıldı. Geliştirilen ve en iyi hale getirilen yöntem
yerel satıcılardan edinilen 20 farklı kozmetik ürünün içeriğinde
bulunan triklosan’ın miktar tayiminin yapılması için kullanıldı.
Geliştirilen ters faz-ince tabaka kromatografisi/densitometri
yönteminin kozmetik ürünlerde triklosan’ın miktar tayini için
rutin olarak kulanılacağı gibi farmasötik ürünlerde ve gıdalarda
yapılacak aynı amaçlı analizlerde de kullanımı önerilmektedir.

References

  • 1. Laurie MG. FDA bans common ingredients in antibacterial soaps and body washes. 2016. Available at; https://www. washingtonpost.com/news/to-your-health/wp/2016/09/02/ fda-bans-some-antibacterial-soaps-and-body-washes/?utm_ term=.9db49f1663da
  • 2. Russell AD. Whither triclosan? J Antimicrob Chemother 2004; 53: 693–5.
  • 3. Allmyr M, Harden F, Toms LM, Mueller JF, McLachlan MS, Adolfsson-Erici M, Sandborgh-Englund G. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci Total Environ 2008; 393: 162-7.
  • 4. Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar Environ Res 2000; 50: 153-6.
  • 5. Matsumura N, Ishibashi H, Hirano M, Nagao Y, Watanabe N, Shiratsuchi H, Kai T, Nishimura T, Kashiwagi A, Arizono K. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol Pharm Bull 2005; 28: 1748-51.
  • 6. Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, Lasley B, Pessah IN, Kültz D, Chang DP, Gee SJ, Hammock BD. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environ Health Perspect 2008; 116: 1203-10.
  • 7. Jung EM, An BS, Choi KC, Jeung EB. Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicol Lett 2012; 208: 142-8.
  • 8. Kaul N, Agrawal H, Paradkar AR, Mahadik KR. HPTLC method for determination of nevirapine in pharmaceutical dosage form. Talanta 2004; 62: 843–52.
  • 9. Swarbrick J. Encyclopedia of Pharmaceutical technology, 1st edition, volme 1. Informa Healthcare Inc, London, UK. 2007, pp 2452–2467.
  • 10. Cabaleiro N, Pena-Pereira F, de la Calle I, Bendicho C, Lavilla I. Determination of TCS by cuvetteless UV–VIS microspectrophotometry following simultaneous ultrasound assisted emulsification–microextraction with derivatization: Use of a micellar-ionic liquid as extractant. Microchem J 2011; 99: 246–51.
  • 11. Liu T, Wu D. High-performance liquid chromatographic determination of TCS and triclocarban in cosmetic products. Int J Cos Sci 2012; 34: 489-94.
  • 12. Xie S, Deng H, Xiang B, Xiang S. Detection of trace triclocarban in water sample using solid-phase extraction−liquid chromatography with stochastic resonance algorithm. Environ Sci Technol 2008; 42: 2988–91.
  • 13. Guo JH, Li XH, Cao XL, Li Y, Wang XZ, Xu XB. Determination of TCS, triclocarban and methyl-TCS in aqueous samples by dispersive liquid–liquid microextraction combined with rapid liquid chromatography. J Chromatogr A 2009; 1216: 3038–43.
  • 14. Baranowska I, Magiera S, Bortniczuk K. Reverse-phase HPLC method for the simultaneous analysis of TCS and triclocarban in surface waters. Water Sci Technol: Water Supply 2010; 10: 173-80.
  • 15. Scalia S, Guarneri M, Menegatti E. Assay of TCS in deodorant sticks and soaps by supercritical fluid extraction and HPLC. J Soc Cos Chem 1994; 45: 35-42.
  • 16. Verma Kusum S, Kang X. Analysis of TCS and Triclocarban in soil and biosolids using molecularly ımprinted solid phase extraction coupled with HPLC-UV. J AOAC Int 2010; 93: 1313-21.
  • 17. Liu Y, Song QJ, Wang L. Development and characterization of an amperometric sensor for TCS detection based on electropolymerized molecularly imprinted polymer. Microchem J 2009; 91: 222-6.
  • 18. Yan H, Wang H, Qin X, Liu B, Du J. Ultrasound-assisted dispersive liquid–liquid micro-extraction for determination of fluoroquinolones in pharmaceutical wastewater. J Pharm Biomed Anal 2011; 54: 53–7.
  • 19. Shen JY, Chang MS, Yang SH, Wu GJ. Simultaneous and rapid determination of TCS, triclocarban and their four related transformation products in water samples using SPMEHPLC- DAD. J Liq Chromatogr Related Technol 2012; 35: 2280-93.
  • 20. Kim JW, Ramaswamy BR, Chang KH, Isobe T, Tanabe S. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2011; 1218: 3511–20.
  • 21. Hong Guo J, Hong Li X, Cao XL, Qu L, Hou DK, Xu XB. Temperature-controlled ionic liquid dispersive liquid phase microextraction combined with ultra-high-pressure liquid chromatography for the rapid determination of TCS, triclocarban and methyl-TCS in aqueous samples. Sci China Chem 2010; 53: 2600–27.
  • 22. Gonzalez-Marino I, Quintana JB, Rodriguez I, Cela R. Simultaneous determination of parabens, TCS and triclocarban in water by liquid chromatography / electrospray ionisation tandem mass spectrometry. J Sep Sci 2009; 23: 1756–66.
  • 23. Asimakopoulosa AG, Wang L, Thomaidis NS, Kannan K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, TCS, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2014; 1324: 141–8.
  • 24. Sun J, Yi CL, Zhao RS, Wang X, Jiang WQ, Wang XK. Determination of trace TCS in environmental water by microporous bamboo-activated charcoal solid-phase extraction combined with HPLC-ESI-MS. J Sep Sci 2012; 35: 2781–6.
  • 25. Quintana JB, Reemtsma T. Sensitive determination of acidic drugs and TCS in surface and wastewater by ion-pair reversephase liquid chromatography/tandem mass spectrometry. Rapid Comm Mass Spect 2004; 18: 765-74.
  • 26. Zhao RS, Wang X, Sun J, Wang SS, Yuan JP, Wang XK. Trace determination of TCS and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC–ESI-MS–MS. Anal Bioanal Chem 2010; 397: 1627–33.
  • 27. Shi Y, Liu X, Zhanga J, Shao B. Analysis of TCS and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. J Chromatogr B 2013; 934: 97-101.
  • 28. Yi CL, Guo WL, Wang XK. Simultaneous determination of triclocarban and TCS in environmental water by using SPE combined with HPLC-ESI-MS. Adv Mat Res 2013; 610:268- 71.
  • 29. Zhao RS, Wang X, Sun J, Hu C, Wang XK. Determination of TCS and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchim Acta 2011; 174: 145-51.
  • 30. Zhao RS, Wang X, Sun J, Yuan JP, Wang SS, Wang XK. Temperature-controlled ionic liquid dispersive liquid-phase microextraction for the sensitive determination of TCS and triclocarban in environmental water samples prior to HPLCESI- MS/MS. Microchim Acta 2010; 33: 1842-8.
  • 31. Zhao RS, Wang X, Sun J, Hu C, Wang XK. Simultaneous determination of TCS, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS. J Sep Sci 2011; 35: 2544–52.
  • 32. Chu S, Metcalfe CD. Simultaneous determination of triclocarban and TCS in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 2007; 1164: 212–8.
  • 33. Sanchez-Brunete C, Miguel E, Albero B, Tadeo JL. Determination of TCS and methyl TCS in environmental solid samples by matrix solid-phase dispersion and gas chromatography-mass spectrometry. J Sep Sci 2010; 33: 2768– 75.
  • 34. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 2008; 1190: 253–62.
There are 34 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Kavitha Jayaseelan This is me

Santhana Lakshmi Santhana Lakshmi This is me

Publication Date June 23, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Jayaseelan, K., & Santhana Lakshmi, S. L. (2017). Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations. Marmara Pharmaceutical Journal, 21(3), 612-619. https://doi.org/10.12991/marupj.323289
AMA Jayaseelan K, Santhana Lakshmi SL. Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations. Marmara Pharm J. June 2017;21(3):612-619. doi:10.12991/marupj.323289
Chicago Jayaseelan, Kavitha, and Santhana Lakshmi Santhana Lakshmi. “Central Composite Design to Develop a Robust RP-TLC/Densitometry Method for Quantification of Triclosan in Cosmetic Preparations”. Marmara Pharmaceutical Journal 21, no. 3 (June 2017): 612-19. https://doi.org/10.12991/marupj.323289.
EndNote Jayaseelan K, Santhana Lakshmi SL (June 1, 2017) Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations. Marmara Pharmaceutical Journal 21 3 612–619.
IEEE K. Jayaseelan and S. L. Santhana Lakshmi, “Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations”, Marmara Pharm J, vol. 21, no. 3, pp. 612–619, 2017, doi: 10.12991/marupj.323289.
ISNAD Jayaseelan, Kavitha - Santhana Lakshmi, Santhana Lakshmi. “Central Composite Design to Develop a Robust RP-TLC/Densitometry Method for Quantification of Triclosan in Cosmetic Preparations”. Marmara Pharmaceutical Journal 21/3 (June 2017), 612-619. https://doi.org/10.12991/marupj.323289.
JAMA Jayaseelan K, Santhana Lakshmi SL. Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations. Marmara Pharm J. 2017;21:612–619.
MLA Jayaseelan, Kavitha and Santhana Lakshmi Santhana Lakshmi. “Central Composite Design to Develop a Robust RP-TLC/Densitometry Method for Quantification of Triclosan in Cosmetic Preparations”. Marmara Pharmaceutical Journal, vol. 21, no. 3, 2017, pp. 612-9, doi:10.12991/marupj.323289.
Vancouver Jayaseelan K, Santhana Lakshmi SL. Central Composite Design to develop a robust RP-TLC/Densitometry method for quantification of Triclosan in cosmetic preparations. Marmara Pharm J. 2017;21(3):612-9.