Research Article
BibTex RIS Cite

Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors

Year 2017, Volume: 21 Issue: 3, 620 - 630, 23.06.2017
https://doi.org/10.12991/marupj.323292

Abstract

Factor Xa (FXa), a trypsin-like serine protease, is wellestablished
target for the development of the anticoagulants.
Number of molecules were reported as Factor Xa inhibitors
but most of them have pharmacokinetic issues. In this present
communication, we report development and validation of
the group based quantitative structure activity relationship
(GQSAR) studies on 48 chromen-2-one derivatives as effective
inhibitors of FXa. All the molecules were fragmented into eleven
functional fragments (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10
and R11). All the developed GQSAR models were generated
using multiple linear regression analysis (MLR). The generated
GQSAR models were selected on the basis of statistical data that
models having r2 should be above 0.6 were used to check the
external predictivity while the significance of the model was
decided on the basis of F value. Developed GQSAR models
reveled presence of lipophilic groups on fragment R6 will
diminish the bio-activity while at R2 it will lead to increase
in bioactivity of molecules. Additionally, minimum number
of rotatable bonds at fragments R1 was fruitful for better FXa
inhibition activity. The results of GQSAR models may lead to
better understanding of design and development of novel FXa
inhibitors.

References

  • 1. Bhatia MS, Ingale KB, Choudhari PB, Bhatia NM, Sawant RL. Application quantum and physico chemical molecular descriptors utilizing principal components to study mode of anticoagulant activity of pyridyl chromen-2-one derivatives. Bioorg Med Chem 2009; 17: 1654-62.
  • 2. Bohm M, Sturzebecher J, Klebe GJ. Three-Dimensional quantitative structure−activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. Med Chem 1999; 42: 458-77.
  • 3. Hirsh J, Anand SS, Halperin JL, Fuster V. Guide to anticoagulant therapy: Heparin. Circulation 2001; 103: 2994-3018.
  • 4. Hogg PJ, Jackson CM. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: Implications for heparin efficacy. P Natl Acad Sci USA 1989; 86: 3619-23.
  • 5. Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clotbound thrombin is protected from inhibition by heparinantithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385-91.
  • 6. Walenga JM. An overview of the direct thrombin inhibitor argatroban. Pathophysiol Haemost Thromb 2002; 32: 9-14.
  • 7. Riva N, Lip GY. A new era for anticoagulation in atrial fibrillation. Which anticoagulant should we choose for long term prevention of thromboembolic complications in patients with atrial fibrillation? Pol Arch Med Wewn 2012; 122: 45–53.
  • 8. Hart RG, Pearce LA, Aquilar MI. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146: 857–67.
  • 9. Perez A, Eraso L, Merli G. Implications of new anticoagulants in primary practice. Int J Clin Pract 2013; 67: 139–56.
  • 10. Vílchez JA, Gallego P, Lip GY. Safety of new oral anticoagulant drugs: A perspective. Ther Adv Drug Saf 2014, 5: 8-20.
  • 11. Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart 2001; 86: 516–21.
  • 12. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of Atrial Fibrillation in the U.S. adult population. Am J Cardiol 2013; 112: 1142–7.
  • 13. Hagens VE, Ranchor AV, Van Sonderen E, Bosker HA, Kamp O, Tijssen JG, Kingma JH, Crijns HJ, Van Gelder IC,RACE Study Group. Effect of rate or rhythm control on quality of life in persistent atrial fibrillation. J Am Coll Cardiol 2004; 43: 241–7.
  • 14. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, Stijnen T, Lip GY, Witteman JC. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 2006; 27: 949–53.
  • 15. Hadjipavlou LD. Review, reevaluation, and new results in quantitative structure-activity studies of anticonvulsants. Med Res Rev 1998; 18: 91-119.
  • 16. Singh Bhadoriya K, Sharma MC, Sharma S, Jain SV, Avchar MA. An approach to design potent anti-Alzheimer’s agents by 3D-QSAR studies on fused 5,6-bicyclic heterocycles as γ-secretase modulators using kNN–MFA methodology. Arab J Chem 2014; 7:924-35.
  • 17. Patel HM, Noolvi MN, Sharma P, Jaiswal V, Bansal S, Lohan S, Kumar SS, Abbot V, Dhiman S, Bhardwaj V. Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Med Chem Res 2014;12: 4991– 5007.
  • 18. Ajmani S, Jadhav K, Kulkarni SA. Group-Based QSAR (G-QSAR): Mitigating interpretation challenges in QSAR. QSAR & Comb Sci 2009; 28:36-51.
  • 19. Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inform 2012;31:473-90.
  • 20. VlifeMDS: Molecular Design Suite 4.4. In., 3.0 edn: Vlife Sciences Technologies Pvt. Ltd., Pune, India. 2015.
  • 21. Choudhari P, Kumbhar S, Phalle S, Choudhari S, Desai S, Khare S, Jadhav S. Application of group-based QSAR on 2-thioxo-4 thiazolidinone for development of potent antidiabetic compounds. J Mol Struct 2017; 1128: 355-60.
  • 22. Halgren TA. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 1996; 17: 553–86.
  • 23. Baumann K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 2002; 42: 26–35.
  • 24. Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK. Validation of QSAR models-strategies and importance. Int J Drug Des Disc 2011; 2: 511-9.
  • 25. Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA) 1: Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988; 110: 5959–67.
  • 26. Ajmani S, Agrawal A, Kulkarni SA. A comprehensive structure–activity analysis of protein kinase B-alpha (Akt1) inhibitors. J Mol Graph Model 2010; 28: 683-94.

Fxa inhibitörü etkili sübstitüe kromen-2-on bileşiklerinin fragment temelli kantitatif regresyon özelliklerinin incelenmesi

Year 2017, Volume: 21 Issue: 3, 620 - 630, 23.06.2017
https://doi.org/10.12991/marupj.323292

Abstract

Faktör Xa (FXa), tripsin-benzeri bir serin proteaz olup
antikoagülan etkili bileşiklerin tasarlanmasında temel alınan
önemli bir hedeftir. Literatürde, Faktör Xa inhibitörü olduğu
bildirilen birçok bileşiğin farmakokinetik açıdan sorunlu
olduğu bildirilmektedir. Bu çalışmada, FXa’yı önemli ölçüde
inhibe eden 48 kromen-2-on türevinin grup temelli kantitatif
yapı etki ilişkisi (GQSAR) üzerinde çalışılmış ve elde edilen
bulgular doğrulanmıştır. Bütün bileşikler onbir fonksiyonel
fragmente (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 ve R11)
ayrılarak incelenmiştir. Geliştirilen tüm GQSAR modelleri çoklu
lineer regresyon analizi (MLR) kullanılarak oluşturulmuştur.
Geliştirilen GQSAR modellerinden r2 değerleri 0.6’nın üzerinde
olanlar istatistiksel yöntemler doğrultusunda seçilmiş ve dış
tahmine dayalı analiz yönteminin sağlamasını yapmak amacıyla
kullanılmış, oluşturulan modelin anlamlılığı F değeri dikkate
alınarak tanımlanmıştır. Geliştirilen GQSAR modelleri; lipofilik
grupların fragment R6 üzerindeki varlığının biyoaktiviteyi
azalttığını, fragment R2 üzerinde bulunmaları durumunda ise
biyoaktivitenin arttığını göstermiştir. Buna ek olarak, fragment
R1’de minimum sayıda dönebilen bağ olması durumunun FXa
inhibisyonunu arttırdığı tespit edilmiştir. GQSAR modellerinin
incelenmesi ile elde edilen sonuçların yeni FXa inhibitörlerinin
tasarımı ve geliştirilmesi için yararlı olduğu düşünülmektedir.

References

  • 1. Bhatia MS, Ingale KB, Choudhari PB, Bhatia NM, Sawant RL. Application quantum and physico chemical molecular descriptors utilizing principal components to study mode of anticoagulant activity of pyridyl chromen-2-one derivatives. Bioorg Med Chem 2009; 17: 1654-62.
  • 2. Bohm M, Sturzebecher J, Klebe GJ. Three-Dimensional quantitative structure−activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. Med Chem 1999; 42: 458-77.
  • 3. Hirsh J, Anand SS, Halperin JL, Fuster V. Guide to anticoagulant therapy: Heparin. Circulation 2001; 103: 2994-3018.
  • 4. Hogg PJ, Jackson CM. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: Implications for heparin efficacy. P Natl Acad Sci USA 1989; 86: 3619-23.
  • 5. Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clotbound thrombin is protected from inhibition by heparinantithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385-91.
  • 6. Walenga JM. An overview of the direct thrombin inhibitor argatroban. Pathophysiol Haemost Thromb 2002; 32: 9-14.
  • 7. Riva N, Lip GY. A new era for anticoagulation in atrial fibrillation. Which anticoagulant should we choose for long term prevention of thromboembolic complications in patients with atrial fibrillation? Pol Arch Med Wewn 2012; 122: 45–53.
  • 8. Hart RG, Pearce LA, Aquilar MI. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146: 857–67.
  • 9. Perez A, Eraso L, Merli G. Implications of new anticoagulants in primary practice. Int J Clin Pract 2013; 67: 139–56.
  • 10. Vílchez JA, Gallego P, Lip GY. Safety of new oral anticoagulant drugs: A perspective. Ther Adv Drug Saf 2014, 5: 8-20.
  • 11. Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart 2001; 86: 516–21.
  • 12. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of Atrial Fibrillation in the U.S. adult population. Am J Cardiol 2013; 112: 1142–7.
  • 13. Hagens VE, Ranchor AV, Van Sonderen E, Bosker HA, Kamp O, Tijssen JG, Kingma JH, Crijns HJ, Van Gelder IC,RACE Study Group. Effect of rate or rhythm control on quality of life in persistent atrial fibrillation. J Am Coll Cardiol 2004; 43: 241–7.
  • 14. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, Stijnen T, Lip GY, Witteman JC. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 2006; 27: 949–53.
  • 15. Hadjipavlou LD. Review, reevaluation, and new results in quantitative structure-activity studies of anticonvulsants. Med Res Rev 1998; 18: 91-119.
  • 16. Singh Bhadoriya K, Sharma MC, Sharma S, Jain SV, Avchar MA. An approach to design potent anti-Alzheimer’s agents by 3D-QSAR studies on fused 5,6-bicyclic heterocycles as γ-secretase modulators using kNN–MFA methodology. Arab J Chem 2014; 7:924-35.
  • 17. Patel HM, Noolvi MN, Sharma P, Jaiswal V, Bansal S, Lohan S, Kumar SS, Abbot V, Dhiman S, Bhardwaj V. Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Med Chem Res 2014;12: 4991– 5007.
  • 18. Ajmani S, Jadhav K, Kulkarni SA. Group-Based QSAR (G-QSAR): Mitigating interpretation challenges in QSAR. QSAR & Comb Sci 2009; 28:36-51.
  • 19. Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inform 2012;31:473-90.
  • 20. VlifeMDS: Molecular Design Suite 4.4. In., 3.0 edn: Vlife Sciences Technologies Pvt. Ltd., Pune, India. 2015.
  • 21. Choudhari P, Kumbhar S, Phalle S, Choudhari S, Desai S, Khare S, Jadhav S. Application of group-based QSAR on 2-thioxo-4 thiazolidinone for development of potent antidiabetic compounds. J Mol Struct 2017; 1128: 355-60.
  • 22. Halgren TA. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 1996; 17: 553–86.
  • 23. Baumann K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 2002; 42: 26–35.
  • 24. Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK. Validation of QSAR models-strategies and importance. Int J Drug Des Disc 2011; 2: 511-9.
  • 25. Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA) 1: Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988; 110: 5959–67.
  • 26. Ajmani S, Agrawal A, Kulkarni SA. A comprehensive structure–activity analysis of protein kinase B-alpha (Akt1) inhibitors. J Mol Graph Model 2010; 28: 683-94.
There are 26 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Santosh Sahadeo Kumbhar This is me

Prafulla Balkrishna Choudhari This is me

Manish Sudesh Bhatia This is me

Publication Date June 23, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Sahadeo Kumbhar, S., Balkrishna Choudhari, P., & Sudesh Bhatia, M. (2017). Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors. Marmara Pharmaceutical Journal, 21(3), 620-630. https://doi.org/10.12991/marupj.323292
AMA Sahadeo Kumbhar S, Balkrishna Choudhari P, Sudesh Bhatia M. Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors. Marmara Pharm J. June 2017;21(3):620-630. doi:10.12991/marupj.323292
Chicago Sahadeo Kumbhar, Santosh, Prafulla Balkrishna Choudhari, and Manish Sudesh Bhatia. “Investigation of Fragment Based Quantitative Regression on a Series of Substituted Chromen-2-One Derivatives As FXa Inhibitors”. Marmara Pharmaceutical Journal 21, no. 3 (June 2017): 620-30. https://doi.org/10.12991/marupj.323292.
EndNote Sahadeo Kumbhar S, Balkrishna Choudhari P, Sudesh Bhatia M (June 1, 2017) Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors. Marmara Pharmaceutical Journal 21 3 620–630.
IEEE S. Sahadeo Kumbhar, P. Balkrishna Choudhari, and M. Sudesh Bhatia, “Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors”, Marmara Pharm J, vol. 21, no. 3, pp. 620–630, 2017, doi: 10.12991/marupj.323292.
ISNAD Sahadeo Kumbhar, Santosh et al. “Investigation of Fragment Based Quantitative Regression on a Series of Substituted Chromen-2-One Derivatives As FXa Inhibitors”. Marmara Pharmaceutical Journal 21/3 (June 2017), 620-630. https://doi.org/10.12991/marupj.323292.
JAMA Sahadeo Kumbhar S, Balkrishna Choudhari P, Sudesh Bhatia M. Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors. Marmara Pharm J. 2017;21:620–630.
MLA Sahadeo Kumbhar, Santosh et al. “Investigation of Fragment Based Quantitative Regression on a Series of Substituted Chromen-2-One Derivatives As FXa Inhibitors”. Marmara Pharmaceutical Journal, vol. 21, no. 3, 2017, pp. 620-3, doi:10.12991/marupj.323292.
Vancouver Sahadeo Kumbhar S, Balkrishna Choudhari P, Sudesh Bhatia M. Investigation of fragment based quantitative regression on a series of substituted chromen-2-one derivatives as FXa inhibitors. Marmara Pharm J. 2017;21(3):620-3.