Review
BibTex RIS Cite

Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics

Year 2024, , 239 - 250, 30.09.2024
https://doi.org/10.33714/masteb.1488998

Abstract

Aquaculture, a vital component of global food production, faces challenges such as antimicrobial residues and resistance due to the extensive use of antibiotics. This review explores sustainable alternatives to antibiotics in aquaculture. Vaccines play a critical role in disease prevention, significantly reducing antibiotic reliance. Phage therapy targets specific bacterial pathogens, offering an environmentally friendly solution, while quorum quenching disrupts bacterial communication, reducing virulence without promoting resistance. Probiotics and prebiotics enhance gut health and disease resistance, with synbiotics showing synergistic effects. Emerging technologies such as parabiotics and postbiotics, along with advances in metagenomics and next-generation sequencing, improve our understanding of microbiomes, leading to more effective disease control strategies. Medicinal plants provide cost-effective, natural antimicrobial and immune-stimulating properties, while nanoparticles degrade antibiotics, reducing pollution. A multifaceted approach that integrates these methods can mitigate antimicrobial resistance risks, ensuring the sustainability of aquaculture. Tailoring strategies to specific environmental conditions, species, and pathogens is crucial, emphasizing the need for continuous development and adaptation to maintain the long-term viability of the aquaculture industry.

Ethical Statement

For this type of study, formal consent is not required.

Supporting Institution

NA

References

  • Abutbul, S., Golan-Goldhirsh, A., Barazani, O., & Zilberg, D. (2004). Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture, 238(1-4), 97-105. https://doi.org/10.1016/j.aquaculture.2004.05.016
  • Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunology, 90, 210-214. https://doi.org/10.1016/j.fsi.2019.04.066
  • Alday-Sanz, V., Corsin, F., Irde, E., & Bondad-Reantaso, M. G. (2005). Survey on the use of veterinary medicines in aquaculture. In M. G. Bondad-Reantaso, J. R. Arthur, & R. P. Subasinghe (Eds.), Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production (FAO Fisheries and Aquaculture Technical Paper No. 547, pp. 29-44). FAO.
  • Antunes, P., Machado, J., & Peixe, L. (2006). Illegal use of nitrofurans in food animals: Contribution to human salmonellosis? Clinical Microbiology and Infection, 12(11), 1047-1049. https://doi.org/10.1111/j.1469-0691.2006.01539.x
  • Arsène, M. M. J., Davares, A. K. L., Viktorovna, P. I., et al. (2022). The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Veterinary World, 15(3), 662-671. https://doi.org/10.14202/vetworld.2022.662-671
  • Baloch, A. R., Zhang, X. Y., & Schade, R. (2015). IgY technology in aquaculture—A review. Reviews in Aquaculture, 7(3), 153-160. https://doi.org/10.1111/raq.12059
  • Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., & Hao, B. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786
  • Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134
  • Chen, R., Zhou, Z., Cao, Y., Bai, Y., & Yao, B. (2010). High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microbial Cell Factories, 9, 39. https://doi.org/10.1186/1475-2859-9-39
  • Choudhury, T. G., Nagaraju, V. T., Gita, S., Paria, A., & Parhi, J. (2016). Advances in bacteriophage research for bacterial disease control in aquaculture. Reviews in Fisheries Science & Aquaculture, 25, 113-125. https://doi.org/10.1080/23308249.2016.1241977
  • Citarasu, T. (2010). Herbal biomedicines: A new opportunity for aquaculture industry. Aquaculture International, 18(3), 403-414. https://doi.org/10.1007/s10499-009-9253-7
  • Dawood, M. A. O., Koshio, S., & Esteban, M. A. (2019) Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Reviews in Aquaculture, 11(4), 1315–1342. https://doi.org/10.1111/raq.12209
  • Deekshit, V. K., Maiti, B., Krishna Kumar, B., Kotian, A., Pinto, G., Bondad‐Reantaso, M. G., Karunasagar, I., & Karunasagar, I. (2023). Antimicrobial resistance in fish pathogens and alternative risk mitigation strategies. Reviews in Aquaculture, 15(1), 261-273. https://doi.org/10.1111/raq.12715
  • Defoirdt, T. (2014). Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 6, 100-114. https://doi.org/10.1111/raq.12030
  • Diwan, A. D., Harke, S. N., & Panche, A. N. (2021). Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. Journal of Animal Physiology and Animal Nutrition, 106(2), 1-29. https://doi.org/10.1111/jpn.13619
  • Dowling, A., O’Dwyer, J., & Adley, C. C. (2013). Alternatives to antibiotics: Future trends. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (pp. 216-226). Formatex Research Center.
  • Duman, M., Altun, S., Saticioglu, I. B., & Romalde, J. L. (2023). A review of bacterial disease outbreaks in rainbow trout (Oncorhynchus mykiss) reported from 2010 to 2022. Journal of Fish Diseases, In press. https://doi.org/10.1111/jfd.13886
  • Erkinharju, T., Dalmo, R. A., Hansen, M., & Seternes, T. (2021). Cleaner fish in aquaculture: Review on diseases and vaccination. Reviews in Aquaculture, 13(1), 189-237. https://doi.org/10.1111/raq.12470
  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200. https://doi.org/10.1016/j.aaf.2021.12.006
  • FAO (Food and Agriculture Organization of the United Nations). (2019). Aquaculture Development. 8. Recommendations for Prudent and Responsible Use of Veterinary Medicines in Aquaculture. FAO Technical Guidelines for Responsible Fisheries. FAO.
  • FAO (Food and Agriculture Organization of the United Nations). (2020). The State of World Fisheries and Aquaculture. Sustainability in Action. FAO.
  • FAO (Food and Agriculture Organization of the United Nations). (2023). The State of World Fisheries and Aquaculture 2023: Towards Blue Transformation. FAO.
  • Farsani, M. N., Hoseinifar, S. H., Rashidian, G., Farsani, H. G., Ashouri, G., & Van Doan, H. (2019). Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 91, 233-240. https://doi.org/10.1016/j.fsi.2019.05.031
  • Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847-1868. https://doi.org/10.1007/s00253-011-3213-7
  • Gan, H., He, H., Sato, A., Hatta, H., Nakao, M., & Somamoto, T. (2015). Ulcer disease prophylaxis in koi carp by bath immersion with chicken egg yolk containing anti-Aeromonas salmonicida IgY. Research in Veterinary Science, 99, 82-86. https://doi.org/10.1016/j.rvsc.2015.01.016
  • Goh, J. X. H., Tan, T-H., L., Law, W-F. J., Ser, H-L., Khaw, K. Y., Letchumanan, V., Lee, L-H., Goh, B-H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14(3), 1-80. https://doi.org/10.1111/raq.12659
  • Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2016). Quorum quenching: Role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86-116. https://doi.org/10.1093/femsre/fuv038
  • Grossman, T. H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6(4), a025387. https://doi.org/10.1101/cshperspect.a025387
  • Hansson, M., Nygren, P. A. K., & Stahl, S. (2000). Design and production of recombinant subunit vaccines. Biotechnology and Applied Biochemistry, 32, 95-107. https://doi.org/10.1042/BA20000034
  • Harikrishnan, R., Balasundaram, C., & Heo, M-S. (2011). Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317(1-4), 1-15. https://doi.org/10.1016/j.aquaculture.2011.03.039
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29, 11054-11075. https://doi.org/10.1007/s11356-021-17825-4
  • Kalatzis, P. (2019). Phage therapy applications in aquaculture. Capsid & Tail, (33). Retrieved on April 20, 2024, from https://phage.directory/capsid/phage-therapy-aquaculture
  • Karunasagar, I. (2020). Review of national residue control programme for aquaculture drugs in selected countries. Asian Fisheries Science, 33.S1, 62-74. https://doi.org/10.33997/j.afs.2020.33.S1.010
  • Kumar, G., Engle, C., & Tucker, C. (2018). Factors driving aquaculture technology adoption. Journal of the World Aquaculture Society, 49(3), 447-476. https://doi.org/10.1111/jwas.12514
  • Li, T., Long, M., Ji, C., Shen, Z., Gatesoupe, F-J., Zhang, X., Zhang, Q., Zhang, L., Zhao, Y., Liu, X., & Li, A. (2016). Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Scientific Reports, 6(1), 30606. https://doi.org/10.1038/srep30606
  • Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/10.1111/raq.12344
  • Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569
  • Mahious, A. S., Gatesoupe, F. J., Hervi, M., Metailler, R., & Ollevier, F. (2006). Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, 1758). Aquaculture International, 14(3), 219-229. https://doi.org/10.1007/s10499-005-9003-4
  • Majumder, D., & Dash, G. (2017). Application of nanotechnology in fisheries and aquaculture. Everyman’s Science, 51(6), 358-364. Retrieved on April 22, 2024, from https://www.sciencecongress.nic.in/pdf/e-book/Feb17-March17.pdf
  • Melo-López, F. N., Zermeño-Cervantes, L. A., Barraza, A., Loera-Muro, A., & Cardona-Félix, C. S. (2021). Biochemical characterization of LysVpKK5 endolysin from a marine vibriophage. Protein Expression and Purification, 188, 105971. https://doi.org/10.1016/j.pep.2021.105971
  • Mohammadzadeh, S., Ahmadifar, E., Masoudi, E., Milla, S., El-Shall, N. A., Alagawany, M., Bin Emran, T., Michalak, I., & Dhama, K. (2022). Applications of recombinant proteins in aquaculture. Aquaculture, 561, 738701. https://doi.org/10.1016/j.aquaculture.2022.738701
  • Moriarty, D. J. W. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4), 351–358. https://doi.org/10.1016/S0044-8486(98)00199-9
  • Munang’andu, H. M. (2018). Intracellular bacterial infections: A challenge for developing cellular mediated immunity vaccines for farmed fish. Microorganisms, 6(2), 33. https://doi.org/10.3390/microorganisms6020033
  • Nayak, A., Karunasagar, I., Chakraborty, A., & Maiti, B. (2021). Potential application of bacteriocins for sustainable aquaculture. Reviews in Aquaculture, 20, 1234-1248. https://doi.org/10.1111/raq.12647
  • Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017
  • Nesse, L. L., & Simm, R. (2018). Biofilm: A hotspot for emerging bacterial genotypes. Advances in Applied Microbiology, 103, 223-246. https://doi.org/10.1016/bs.aambs.2018.01.003
  • Nikoskelainen, S., Ouwehand, A., Salminen, S. and Bylund, G. (2003). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 216(3-4), 229-236. https://doi.org/10.1016/S0044-8486(01)00593-2
  • Noad, R., & Roy, P. (2003). Virus-like particles as immunogens. Trends in Microbiology, 11(9), 438-444. https://doi.org/10.1016/S0966-842X(03)00208-7
  • Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39, 21. https://doi.org/10.1186/s40985-018-0099-2
  • Pant, V., Chanu, K. V., & Thakuria, D. (2023). Antimicrobial peptides: An alternative to antibiotics for environment-friendly hill aquaculture. In Pandey, P.K., Pandey, N., & Akhtar, M. S. (Eds.), Fisheries and aquaculture of the temperate Himalayas. Springer. https://doi.org/10.1007/978-981-19-8303-0_17
  • Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - A new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261-279. https://doi.org/10.1038/nrd.2017.243
  • Petty, B. D., Francis-Floyd, R., & Yanong, R. P. E. (2022). Bacterial diseases of fish. Merck Veterinary Manual. Merck & Co., Inc. Retrieved on May 5, 2024, from https://www.merckvetmanual.com/exotic-and-laboratory-animals/aquarium-fishes/bacterial-diseases-of-fish
  • Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 1497-1517. https://doi.org/10.2478/s11756-020-00456-4
  • Rodger, H. D. (2016). Fish disease causing economic impact in global aquaculture. In Adams, A. (Ed.), Fish Vaccines. Birkhäuser Advances in Infectious Diseases Vol. 2-16. (pp. 1-34). Springer. https://doi.org/10.1007/978-3-0348-0980-1_1
  • Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. In Merrifield, D., & Ringo, E. (Eds.), Aquaculture nutrition: Gut health, probiotics and prebiotics (pp. 75-100). John Wiley & Sons. https://doi.org/10.1002/9781118897263.ch4
  • Rufchaei, R., Mirvaghefi, A., Hoseinifar, S. H., Valipour, A., & Nedaei, S. (2020). Effects of dietary administration of water hyacinth (Eichhornia crassipes) leaves extracts on innate immune parameters, antioxidant defence and disease resistance in rainbow trout (Oncorhynchus mykiss). Aquaculture, 515, 734533. https://doi.org/10.1016/j.aquaculture.2019.734533
  • Salgueiro, V., Manageiro, V., Bandarra, N. M., Reis, L., Ferreira, E., & Caniça, M. (2020). Bacterial diversity and antibiotic susceptibility of Sparus aurata from aquaculture. Microorganisms, 8(9), 1343. https://doi.org/10.3390/microorganisms8091343
  • Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
  • Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 21878. https://doi.org/10.1038/s41598-020-78849-3
  • Sheikhlar, A., Meng, G. Y., Alimon, R., Romano, N., & Ebrahimi, M. (2017). Dietary Euphorbia hirta extract improved the resistance of sharptooth catfish Clarias gariepinus to Aeromonas hydrophila. Journal of Aquatic Animal Health, 29(4), 225-235. https://doi.org/10.1080/08997659.2017.1374310
  • Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N. C. M., & Almeida, A. (2014). Influence of environmental variables in the efficiency of phage therapy in aquaculture. Journal of Microbial Biotechnology, 7(5), 401-413. https://doi.org/10.1111/1751-7915.12090
  • Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89-101. https://doi.org/10.1586/14760584.4.1.89
  • Staykov, Y., Spring, P., Denev, S., & Sweetman, J. (2007). Effect of mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 15(2), 153-161. https://doi.org/10.1007/s10499-007-9096-z
  • Tadese, D. A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., Xu, P., Ge, X., Liu, M., Tamiru, M., Zhou, Z., Lakew, A, & Kevin, N. T. (2022). The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847. https://doi.org/10.1111/raq.12626
  • Torrecillas, S., Makol, A., Caballero, M. J., Montero, D., Robaina, L., Real, F., Sweetman, J., Tort, L., & Izquierdo, M. S. (2007). Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & Shellfish Immunology, 23(5), 969-981. https://doi.org/10.1016/j.fsi.2007.03.007
  • Vendrell, D., Balcázar, J. L., de Blas, I., Ruiz-Zarzuela, I., Gironés, O., & Múzquiz, J. L. (2008). Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comparative Immunology, Microbiology and Infectious Diseases, 31(4), 337–345. https://doi.org/10.1016/j.cimid.2007.04.002
  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000
  • Wang, X., Xu, L., Liu, M., Zhao, J., Lu, T., Cao, Y., & Yin, J. (2016). Prokaryotic expression and bioactivity analysis of insulin-like growth factor-I from Hucho taimen. Journal of Fisheries of China, 40(11), 1657-1663.
  • Watts, J. E., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
  • WHO (World Health Organization). (2006). Report of a joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance. Seoul, Republic of Korea, 13–16 June 2006.
  • Winkelbach, A., Schade, R., Schulz, C., & Wuertz, S. (2015). Comparison of oral, rectal and intraperitoneal administration of IgY antibodies in passive immunization of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 23(2), 427-438. https://doi.org/10.1007/s10499-014-9823-1
  • Yilmaz, S., Yilmaz, E., Dawood, M. A., Ringø, E., Ahmadifar, E., & Abdel-Latif, H. M. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514. https://doi.org/10.1016/j.aquaculture.2021.737514
  • Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Łusiak-Szelachowska, M., & Górski, A. (2020). Phage therapy in Poland—A centennial journey to the first ethically approved treatment facility in Europe. Frontiers in Microbiology, 11, 1056. https://doi.org/10.3389/fmicb.2020.01056
  • Zeballos-Gross, D., Rojas-Sereno, Z., Salgado-Caxito, M., Peota, P., Torres, C., & Benavides, J. (2021). The role of gulls as reservoirs of antibiotic resistance in aquatic environments: A scoping review. Frontiers in Microbiology, 12, 703866. https://doi.org/10.3389/fmicb.2021.703886
Year 2024, , 239 - 250, 30.09.2024
https://doi.org/10.33714/masteb.1488998

Abstract

References

  • Abutbul, S., Golan-Goldhirsh, A., Barazani, O., & Zilberg, D. (2004). Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture, 238(1-4), 97-105. https://doi.org/10.1016/j.aquaculture.2004.05.016
  • Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunology, 90, 210-214. https://doi.org/10.1016/j.fsi.2019.04.066
  • Alday-Sanz, V., Corsin, F., Irde, E., & Bondad-Reantaso, M. G. (2005). Survey on the use of veterinary medicines in aquaculture. In M. G. Bondad-Reantaso, J. R. Arthur, & R. P. Subasinghe (Eds.), Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production (FAO Fisheries and Aquaculture Technical Paper No. 547, pp. 29-44). FAO.
  • Antunes, P., Machado, J., & Peixe, L. (2006). Illegal use of nitrofurans in food animals: Contribution to human salmonellosis? Clinical Microbiology and Infection, 12(11), 1047-1049. https://doi.org/10.1111/j.1469-0691.2006.01539.x
  • Arsène, M. M. J., Davares, A. K. L., Viktorovna, P. I., et al. (2022). The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Veterinary World, 15(3), 662-671. https://doi.org/10.14202/vetworld.2022.662-671
  • Baloch, A. R., Zhang, X. Y., & Schade, R. (2015). IgY technology in aquaculture—A review. Reviews in Aquaculture, 7(3), 153-160. https://doi.org/10.1111/raq.12059
  • Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., & Hao, B. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786
  • Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134
  • Chen, R., Zhou, Z., Cao, Y., Bai, Y., & Yao, B. (2010). High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microbial Cell Factories, 9, 39. https://doi.org/10.1186/1475-2859-9-39
  • Choudhury, T. G., Nagaraju, V. T., Gita, S., Paria, A., & Parhi, J. (2016). Advances in bacteriophage research for bacterial disease control in aquaculture. Reviews in Fisheries Science & Aquaculture, 25, 113-125. https://doi.org/10.1080/23308249.2016.1241977
  • Citarasu, T. (2010). Herbal biomedicines: A new opportunity for aquaculture industry. Aquaculture International, 18(3), 403-414. https://doi.org/10.1007/s10499-009-9253-7
  • Dawood, M. A. O., Koshio, S., & Esteban, M. A. (2019) Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Reviews in Aquaculture, 11(4), 1315–1342. https://doi.org/10.1111/raq.12209
  • Deekshit, V. K., Maiti, B., Krishna Kumar, B., Kotian, A., Pinto, G., Bondad‐Reantaso, M. G., Karunasagar, I., & Karunasagar, I. (2023). Antimicrobial resistance in fish pathogens and alternative risk mitigation strategies. Reviews in Aquaculture, 15(1), 261-273. https://doi.org/10.1111/raq.12715
  • Defoirdt, T. (2014). Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 6, 100-114. https://doi.org/10.1111/raq.12030
  • Diwan, A. D., Harke, S. N., & Panche, A. N. (2021). Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. Journal of Animal Physiology and Animal Nutrition, 106(2), 1-29. https://doi.org/10.1111/jpn.13619
  • Dowling, A., O’Dwyer, J., & Adley, C. C. (2013). Alternatives to antibiotics: Future trends. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (pp. 216-226). Formatex Research Center.
  • Duman, M., Altun, S., Saticioglu, I. B., & Romalde, J. L. (2023). A review of bacterial disease outbreaks in rainbow trout (Oncorhynchus mykiss) reported from 2010 to 2022. Journal of Fish Diseases, In press. https://doi.org/10.1111/jfd.13886
  • Erkinharju, T., Dalmo, R. A., Hansen, M., & Seternes, T. (2021). Cleaner fish in aquaculture: Review on diseases and vaccination. Reviews in Aquaculture, 13(1), 189-237. https://doi.org/10.1111/raq.12470
  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200. https://doi.org/10.1016/j.aaf.2021.12.006
  • FAO (Food and Agriculture Organization of the United Nations). (2019). Aquaculture Development. 8. Recommendations for Prudent and Responsible Use of Veterinary Medicines in Aquaculture. FAO Technical Guidelines for Responsible Fisheries. FAO.
  • FAO (Food and Agriculture Organization of the United Nations). (2020). The State of World Fisheries and Aquaculture. Sustainability in Action. FAO.
  • FAO (Food and Agriculture Organization of the United Nations). (2023). The State of World Fisheries and Aquaculture 2023: Towards Blue Transformation. FAO.
  • Farsani, M. N., Hoseinifar, S. H., Rashidian, G., Farsani, H. G., Ashouri, G., & Van Doan, H. (2019). Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 91, 233-240. https://doi.org/10.1016/j.fsi.2019.05.031
  • Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847-1868. https://doi.org/10.1007/s00253-011-3213-7
  • Gan, H., He, H., Sato, A., Hatta, H., Nakao, M., & Somamoto, T. (2015). Ulcer disease prophylaxis in koi carp by bath immersion with chicken egg yolk containing anti-Aeromonas salmonicida IgY. Research in Veterinary Science, 99, 82-86. https://doi.org/10.1016/j.rvsc.2015.01.016
  • Goh, J. X. H., Tan, T-H., L., Law, W-F. J., Ser, H-L., Khaw, K. Y., Letchumanan, V., Lee, L-H., Goh, B-H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14(3), 1-80. https://doi.org/10.1111/raq.12659
  • Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2016). Quorum quenching: Role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86-116. https://doi.org/10.1093/femsre/fuv038
  • Grossman, T. H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6(4), a025387. https://doi.org/10.1101/cshperspect.a025387
  • Hansson, M., Nygren, P. A. K., & Stahl, S. (2000). Design and production of recombinant subunit vaccines. Biotechnology and Applied Biochemistry, 32, 95-107. https://doi.org/10.1042/BA20000034
  • Harikrishnan, R., Balasundaram, C., & Heo, M-S. (2011). Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317(1-4), 1-15. https://doi.org/10.1016/j.aquaculture.2011.03.039
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29, 11054-11075. https://doi.org/10.1007/s11356-021-17825-4
  • Kalatzis, P. (2019). Phage therapy applications in aquaculture. Capsid & Tail, (33). Retrieved on April 20, 2024, from https://phage.directory/capsid/phage-therapy-aquaculture
  • Karunasagar, I. (2020). Review of national residue control programme for aquaculture drugs in selected countries. Asian Fisheries Science, 33.S1, 62-74. https://doi.org/10.33997/j.afs.2020.33.S1.010
  • Kumar, G., Engle, C., & Tucker, C. (2018). Factors driving aquaculture technology adoption. Journal of the World Aquaculture Society, 49(3), 447-476. https://doi.org/10.1111/jwas.12514
  • Li, T., Long, M., Ji, C., Shen, Z., Gatesoupe, F-J., Zhang, X., Zhang, Q., Zhang, L., Zhao, Y., Liu, X., & Li, A. (2016). Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Scientific Reports, 6(1), 30606. https://doi.org/10.1038/srep30606
  • Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/10.1111/raq.12344
  • Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569
  • Mahious, A. S., Gatesoupe, F. J., Hervi, M., Metailler, R., & Ollevier, F. (2006). Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, 1758). Aquaculture International, 14(3), 219-229. https://doi.org/10.1007/s10499-005-9003-4
  • Majumder, D., & Dash, G. (2017). Application of nanotechnology in fisheries and aquaculture. Everyman’s Science, 51(6), 358-364. Retrieved on April 22, 2024, from https://www.sciencecongress.nic.in/pdf/e-book/Feb17-March17.pdf
  • Melo-López, F. N., Zermeño-Cervantes, L. A., Barraza, A., Loera-Muro, A., & Cardona-Félix, C. S. (2021). Biochemical characterization of LysVpKK5 endolysin from a marine vibriophage. Protein Expression and Purification, 188, 105971. https://doi.org/10.1016/j.pep.2021.105971
  • Mohammadzadeh, S., Ahmadifar, E., Masoudi, E., Milla, S., El-Shall, N. A., Alagawany, M., Bin Emran, T., Michalak, I., & Dhama, K. (2022). Applications of recombinant proteins in aquaculture. Aquaculture, 561, 738701. https://doi.org/10.1016/j.aquaculture.2022.738701
  • Moriarty, D. J. W. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4), 351–358. https://doi.org/10.1016/S0044-8486(98)00199-9
  • Munang’andu, H. M. (2018). Intracellular bacterial infections: A challenge for developing cellular mediated immunity vaccines for farmed fish. Microorganisms, 6(2), 33. https://doi.org/10.3390/microorganisms6020033
  • Nayak, A., Karunasagar, I., Chakraborty, A., & Maiti, B. (2021). Potential application of bacteriocins for sustainable aquaculture. Reviews in Aquaculture, 20, 1234-1248. https://doi.org/10.1111/raq.12647
  • Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017
  • Nesse, L. L., & Simm, R. (2018). Biofilm: A hotspot for emerging bacterial genotypes. Advances in Applied Microbiology, 103, 223-246. https://doi.org/10.1016/bs.aambs.2018.01.003
  • Nikoskelainen, S., Ouwehand, A., Salminen, S. and Bylund, G. (2003). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 216(3-4), 229-236. https://doi.org/10.1016/S0044-8486(01)00593-2
  • Noad, R., & Roy, P. (2003). Virus-like particles as immunogens. Trends in Microbiology, 11(9), 438-444. https://doi.org/10.1016/S0966-842X(03)00208-7
  • Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39, 21. https://doi.org/10.1186/s40985-018-0099-2
  • Pant, V., Chanu, K. V., & Thakuria, D. (2023). Antimicrobial peptides: An alternative to antibiotics for environment-friendly hill aquaculture. In Pandey, P.K., Pandey, N., & Akhtar, M. S. (Eds.), Fisheries and aquaculture of the temperate Himalayas. Springer. https://doi.org/10.1007/978-981-19-8303-0_17
  • Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - A new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261-279. https://doi.org/10.1038/nrd.2017.243
  • Petty, B. D., Francis-Floyd, R., & Yanong, R. P. E. (2022). Bacterial diseases of fish. Merck Veterinary Manual. Merck & Co., Inc. Retrieved on May 5, 2024, from https://www.merckvetmanual.com/exotic-and-laboratory-animals/aquarium-fishes/bacterial-diseases-of-fish
  • Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 1497-1517. https://doi.org/10.2478/s11756-020-00456-4
  • Rodger, H. D. (2016). Fish disease causing economic impact in global aquaculture. In Adams, A. (Ed.), Fish Vaccines. Birkhäuser Advances in Infectious Diseases Vol. 2-16. (pp. 1-34). Springer. https://doi.org/10.1007/978-3-0348-0980-1_1
  • Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. In Merrifield, D., & Ringo, E. (Eds.), Aquaculture nutrition: Gut health, probiotics and prebiotics (pp. 75-100). John Wiley & Sons. https://doi.org/10.1002/9781118897263.ch4
  • Rufchaei, R., Mirvaghefi, A., Hoseinifar, S. H., Valipour, A., & Nedaei, S. (2020). Effects of dietary administration of water hyacinth (Eichhornia crassipes) leaves extracts on innate immune parameters, antioxidant defence and disease resistance in rainbow trout (Oncorhynchus mykiss). Aquaculture, 515, 734533. https://doi.org/10.1016/j.aquaculture.2019.734533
  • Salgueiro, V., Manageiro, V., Bandarra, N. M., Reis, L., Ferreira, E., & Caniça, M. (2020). Bacterial diversity and antibiotic susceptibility of Sparus aurata from aquaculture. Microorganisms, 8(9), 1343. https://doi.org/10.3390/microorganisms8091343
  • Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
  • Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 21878. https://doi.org/10.1038/s41598-020-78849-3
  • Sheikhlar, A., Meng, G. Y., Alimon, R., Romano, N., & Ebrahimi, M. (2017). Dietary Euphorbia hirta extract improved the resistance of sharptooth catfish Clarias gariepinus to Aeromonas hydrophila. Journal of Aquatic Animal Health, 29(4), 225-235. https://doi.org/10.1080/08997659.2017.1374310
  • Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N. C. M., & Almeida, A. (2014). Influence of environmental variables in the efficiency of phage therapy in aquaculture. Journal of Microbial Biotechnology, 7(5), 401-413. https://doi.org/10.1111/1751-7915.12090
  • Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89-101. https://doi.org/10.1586/14760584.4.1.89
  • Staykov, Y., Spring, P., Denev, S., & Sweetman, J. (2007). Effect of mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 15(2), 153-161. https://doi.org/10.1007/s10499-007-9096-z
  • Tadese, D. A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., Xu, P., Ge, X., Liu, M., Tamiru, M., Zhou, Z., Lakew, A, & Kevin, N. T. (2022). The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847. https://doi.org/10.1111/raq.12626
  • Torrecillas, S., Makol, A., Caballero, M. J., Montero, D., Robaina, L., Real, F., Sweetman, J., Tort, L., & Izquierdo, M. S. (2007). Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & Shellfish Immunology, 23(5), 969-981. https://doi.org/10.1016/j.fsi.2007.03.007
  • Vendrell, D., Balcázar, J. L., de Blas, I., Ruiz-Zarzuela, I., Gironés, O., & Múzquiz, J. L. (2008). Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comparative Immunology, Microbiology and Infectious Diseases, 31(4), 337–345. https://doi.org/10.1016/j.cimid.2007.04.002
  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000
  • Wang, X., Xu, L., Liu, M., Zhao, J., Lu, T., Cao, Y., & Yin, J. (2016). Prokaryotic expression and bioactivity analysis of insulin-like growth factor-I from Hucho taimen. Journal of Fisheries of China, 40(11), 1657-1663.
  • Watts, J. E., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
  • WHO (World Health Organization). (2006). Report of a joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance. Seoul, Republic of Korea, 13–16 June 2006.
  • Winkelbach, A., Schade, R., Schulz, C., & Wuertz, S. (2015). Comparison of oral, rectal and intraperitoneal administration of IgY antibodies in passive immunization of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 23(2), 427-438. https://doi.org/10.1007/s10499-014-9823-1
  • Yilmaz, S., Yilmaz, E., Dawood, M. A., Ringø, E., Ahmadifar, E., & Abdel-Latif, H. M. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514. https://doi.org/10.1016/j.aquaculture.2021.737514
  • Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Łusiak-Szelachowska, M., & Górski, A. (2020). Phage therapy in Poland—A centennial journey to the first ethically approved treatment facility in Europe. Frontiers in Microbiology, 11, 1056. https://doi.org/10.3389/fmicb.2020.01056
  • Zeballos-Gross, D., Rojas-Sereno, Z., Salgado-Caxito, M., Peota, P., Torres, C., & Benavides, J. (2021). The role of gulls as reservoirs of antibiotic resistance in aquatic environments: A scoping review. Frontiers in Microbiology, 12, 703866. https://doi.org/10.3389/fmicb.2021.703886
There are 74 citations in total.

Details

Primary Language English
Subjects Fish Pests and Diseases, Aquaculture, Aquaculture and Fisheries (Other)
Journal Section Review Paper
Authors

Nimet Kılıç This is me 0000-0003-2149-388X

Gamze Gültekin 0000-0001-6236-6751

Publication Date September 30, 2024
Submission Date May 27, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2024

Cite

APA Kılıç, N., & Gültekin, G. (2024). Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics. Marine Science and Technology Bulletin, 13(3), 239-250. https://doi.org/10.33714/masteb.1488998
AMA Kılıç N, Gültekin G. Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics. Mar. Sci. Tech. Bull. September 2024;13(3):239-250. doi:10.33714/masteb.1488998
Chicago Kılıç, Nimet, and Gamze Gültekin. “Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics”. Marine Science and Technology Bulletin 13, no. 3 (September 2024): 239-50. https://doi.org/10.33714/masteb.1488998.
EndNote Kılıç N, Gültekin G (September 1, 2024) Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics. Marine Science and Technology Bulletin 13 3 239–250.
IEEE N. Kılıç and G. Gültekin, “Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics”, Mar. Sci. Tech. Bull., vol. 13, no. 3, pp. 239–250, 2024, doi: 10.33714/masteb.1488998.
ISNAD Kılıç, Nimet - Gültekin, Gamze. “Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics”. Marine Science and Technology Bulletin 13/3 (September 2024), 239-250. https://doi.org/10.33714/masteb.1488998.
JAMA Kılıç N, Gültekin G. Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics. Mar. Sci. Tech. Bull. 2024;13:239–250.
MLA Kılıç, Nimet and Gamze Gültekin. “Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics”. Marine Science and Technology Bulletin, vol. 13, no. 3, 2024, pp. 239-50, doi:10.33714/masteb.1488998.
Vancouver Kılıç N, Gültekin G. Sustainable Approaches in Aquaculture: Pharmacological and Natural Alternatives to Antibiotics. Mar. Sci. Tech. Bull. 2024;13(3):239-50.

27116