Shell Composition Analysis of European Flat Oyster (Ostrea edulis, Linnaeus 1758) From Marmara Sea, Türkiye: Insights Into Chemical Properties
Year 2024,
, 142 - 150, 30.06.2024
Bayram Kızılkaya
,
Harun Yıldız
,
Pervin Vural
Abstract
The chemical structure of Ostrea edulis (O. edulis) shells was investigated in this work. The study determined zero charge points (PZC) of Ostrea edulis shells. The shell surface charge status is indicated by the PZC value. It was found that the shell PZC value was 8.30. The shells were subjected to Energy Dispersive X-Ray Spectroscopy (EDS) analyses and scanning electron microscope (SEM) pictures. The main structure of calcium carbonate (CaCO3) is made up of carbon, oxygen, and calcium atoms, which were found in the largest quantities based on the EDS data. The structure of CaCO3 was supported by Fourier Transform Infrared Spectroscopy (FT-IR) analysis. As part of the study, X-Ray Diffraction (XRD) investigations were conducted, and it was found that the shell structures are primarily composed of an aragonite and CaCO3 mixture. As is well known, CaCO3, which makes up roughly 94% of the shell, is the primary constituent of bivalves’ shells. This research offers a thorough examination of the chemical makeup of O. edulis shells. This study is thought to serve as the foundation for further research on the biological and chemical characteristics of marine species.
Ethical Statement
For this type of study, formal consent is not required.
Supporting Institution
This study was funded by TUBİTAK, Project number: TOVAG-113O381.
Thanks
This study was funded by TUBİTAK, Project number: TOVAG-113O381.
References
- Acarli, S., Lök, A., Kirtik, A., Acarli, D., Serdar, S., Kucukdermenci, A., Yigitkurt, S., Yildiz, H., & Saltan, A. N. (2015). Seasonal variation in reproductive activity and biochemical composition of flat oyster (Ostrea edulis) in the Homa Lagoon, Izmir Bay, Turkey. Scientia Marina, 79(4), 487-495. https://doi.org/10.3989/scimar.04202.16A
- Acarli, S., Lok, A., Küçükdermenci, A., Yildiz, H., & Serdar, S. (2011). Comparative growth, survival and condition index of flat oyster, Ostrea edulis (Linnaeus 1758) in Mersin Bay, Aegean Sea, Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(2), 203-210. https://doi.org/10.9775/kvfd.2010.2806.
- Agbaje, O. B. A., Shir, I. B., Zax, D. B., Schmidt, A., & Jacob, D. E. (2018a). Biomacromolecules within bivalve shells: Is chitin abundant? Acta Biomaterialia, 80, 176–187. https://doi.org/10.1016/j.actbio.2018.09.009
- Agbaje, O. B. A., Thomas, D., Dominguez, J. G., Mclnerney, B. V., Kosnik, M. A., & Jacob, D. E. (2018b). Biomacromolecules in bivalve shells with crossed lamellar architecture. Journal of Materials Science, 54(6), 4952–4969. https://doi.org/10.1007/s10853-018-3165-8
- Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M. A., Watanabe, T., & Jacob, D. E. (2017). Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). Royal Society Open Science, 4(9), 170622. https://doi.org/10.1098/rsos.170622
- Babić, B., Milonjić, S. K., Polovina, M., & Kaludierović, B. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37(3), 477–481. https://doi.org/10.1016/s0008-6223(98)00216-4
- Bogan, A. E. (2008). Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia, 595(1), 139–147. https://doi.org/10.1007/s10750-007-9011-7
- Carroll, M., & Romanek, C. S. (2008). Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Marine Letters, 28(5–6), 369–381. https://doi.org/10.1007/s00367-008-0117-3
- Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances, 10(49), 29543–29554. https://doi.org/10.1039/d0ra04271d
- Fiol, N., & Villaescusa, I. (2008). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79–84. https://doi.org/10.1007/s10311-008-0139-0
- Grabowski, J. H., Brumbaugh, R. D., Conrad, R. F., Keeler, A. G., Opaluch, J. J., Peterson, C. H., Piehler, M. F., Powers, S. P., & Smyth, A. R. (2012). Economic valuation of ecosystem services provided by Oyster Reefs. BioScience, 62(10), 900–909. https://doi.org/10.1525/bio.2012.62.10.10
- Graf, D. (2013). Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. American Malacological Bulletin, 31(1), 135–153. https://doi.org/10.4003/006.031.0106
- Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Material Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014
- Hou, W. G., Su, Y. L., Sun, D. J., & Zhang, C. G. (2001). Studies on zero point of charge and permanent charge density of MG−FE hydrotalcite-like compounds. Langmuir, 17(6), 1885–1888. https://doi.org/10.1021/la0008838
- Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. The International Journal of Agricultural Policy and Research, 3(1), 53–59. https://doi.org/10.15739/IJAPR.026
- Kosmulski, M. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science, 99(3), 255–264. https://doi.org/10.1016/s0001-8686(02)00080-5
- Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015) The power of databases: The RRUFF project. In Armbruster, T., & Danisi, R. M. (Eds.), Highlights in Mineralogical Crystallography (pp. 1-30). De Gruyter.
- Li, L., Zhang, X., Yun, H., & Li, G. (2017). Complex hierarchical microstructures of Cambrian mollusk Pelagiella: Insight into early biomineralization and evolution. Scientific Reports, 7(1), 1935. https://doi.org/10.1038/s41598-017-02235-9
- Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NIO. Industrial & Engineering Chemistry Research, 50(17), 10017–10023. https://doi.org/10.1021/ie200271d
- Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R. I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20(1), 25. https://doi.org/10.3390/md20010025
- Nakamura, A., De Almeida, A. C., Riera, H. E., De Araújo, J. L. F., Gouveia, V. J. P., De Carvalho, M. D., & Cardoso, A. V., (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Materials Research, 17(suppl 1), 15–22. https://doi.org/10.1590/S1516-14392014005000044
- Pokroy, B., Fieramosca, J. S., Von Dreele, R. B., Fitch, A. N., Caspi, E. N., & Zolotoyabko, E. (2007). Atomic structure of biogenic aragonite. Chemistry of Materials, 19(13), 3244-3251. https://doi.org/10.1021/cm070187u
- Qian, Y. (1999). Taxonomy and biostratigraphy of small shelly fossils in China. In Qian, Y. (Ed.), Taxonomy and biostratigraphy of small shelly fossils in China (pp. 216–219). Science Press.
- Somasundaran, P., & Agar, G. (1967). The zero point of charge of calcite. Journal of Colloid and Interface Science, 24(4), 433–440. https://doi.org/10.1016/0021-9797(67)90241-x
- Spann, N., Harper, E. M., & Aldridge, D. C. (2010). The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. The Science of Nature, 97(8), 743–751. https://doi.org/10.1007/s00114-010-0692-9
- Sverjensky, D. A. (1994). Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochimica Et Cosmochimica Acta, 58(14), 3123–3129. https://doi.org/10.1016/0016-7037(94)90184-8
- Ulagesan, S., Krishnan, S., Nam, T. J., & Choi, Y. H. (2022). A review of bioactive compounds in oyster shell and tissues. Frontiers in Bioengineering and Biotechnology, 10, 913839. https://doi.org/10.3389/fbioe.2022.913839
- USGS. (2001). USGS OFR01-041: X-Ray Diffraction Primer, U. S. Geological Survey Open-File Report 01-041. Retrieved on January 28, 2024, frpö https://pubs.usgs.gov/of/2001/of01-041/htmldocs/xrpd.htm
- Yi, Q., & Bengtson, S. (1989). Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Universitetsforlaget. https://doi.org/10.18261/8200374157-1989-01
- Yildiz, H., Berber, S., Acarli, S., & Vural, P. (2011). Seasonal variation in the condition index, meat yield and biochemical composition of the flat oyster Ostrea edulis (Linnaeus, 1758) from the Dardanelles, Turkey. Italian Journal of Animal Science, 10(1), e5. https://doi.org/10.4081/ijas.2011.e5
Year 2024,
, 142 - 150, 30.06.2024
Bayram Kızılkaya
,
Harun Yıldız
,
Pervin Vural
References
- Acarli, S., Lök, A., Kirtik, A., Acarli, D., Serdar, S., Kucukdermenci, A., Yigitkurt, S., Yildiz, H., & Saltan, A. N. (2015). Seasonal variation in reproductive activity and biochemical composition of flat oyster (Ostrea edulis) in the Homa Lagoon, Izmir Bay, Turkey. Scientia Marina, 79(4), 487-495. https://doi.org/10.3989/scimar.04202.16A
- Acarli, S., Lok, A., Küçükdermenci, A., Yildiz, H., & Serdar, S. (2011). Comparative growth, survival and condition index of flat oyster, Ostrea edulis (Linnaeus 1758) in Mersin Bay, Aegean Sea, Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(2), 203-210. https://doi.org/10.9775/kvfd.2010.2806.
- Agbaje, O. B. A., Shir, I. B., Zax, D. B., Schmidt, A., & Jacob, D. E. (2018a). Biomacromolecules within bivalve shells: Is chitin abundant? Acta Biomaterialia, 80, 176–187. https://doi.org/10.1016/j.actbio.2018.09.009
- Agbaje, O. B. A., Thomas, D., Dominguez, J. G., Mclnerney, B. V., Kosnik, M. A., & Jacob, D. E. (2018b). Biomacromolecules in bivalve shells with crossed lamellar architecture. Journal of Materials Science, 54(6), 4952–4969. https://doi.org/10.1007/s10853-018-3165-8
- Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M. A., Watanabe, T., & Jacob, D. E. (2017). Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). Royal Society Open Science, 4(9), 170622. https://doi.org/10.1098/rsos.170622
- Babić, B., Milonjić, S. K., Polovina, M., & Kaludierović, B. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37(3), 477–481. https://doi.org/10.1016/s0008-6223(98)00216-4
- Bogan, A. E. (2008). Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia, 595(1), 139–147. https://doi.org/10.1007/s10750-007-9011-7
- Carroll, M., & Romanek, C. S. (2008). Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Marine Letters, 28(5–6), 369–381. https://doi.org/10.1007/s00367-008-0117-3
- Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances, 10(49), 29543–29554. https://doi.org/10.1039/d0ra04271d
- Fiol, N., & Villaescusa, I. (2008). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79–84. https://doi.org/10.1007/s10311-008-0139-0
- Grabowski, J. H., Brumbaugh, R. D., Conrad, R. F., Keeler, A. G., Opaluch, J. J., Peterson, C. H., Piehler, M. F., Powers, S. P., & Smyth, A. R. (2012). Economic valuation of ecosystem services provided by Oyster Reefs. BioScience, 62(10), 900–909. https://doi.org/10.1525/bio.2012.62.10.10
- Graf, D. (2013). Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. American Malacological Bulletin, 31(1), 135–153. https://doi.org/10.4003/006.031.0106
- Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Material Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014
- Hou, W. G., Su, Y. L., Sun, D. J., & Zhang, C. G. (2001). Studies on zero point of charge and permanent charge density of MG−FE hydrotalcite-like compounds. Langmuir, 17(6), 1885–1888. https://doi.org/10.1021/la0008838
- Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. The International Journal of Agricultural Policy and Research, 3(1), 53–59. https://doi.org/10.15739/IJAPR.026
- Kosmulski, M. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science, 99(3), 255–264. https://doi.org/10.1016/s0001-8686(02)00080-5
- Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015) The power of databases: The RRUFF project. In Armbruster, T., & Danisi, R. M. (Eds.), Highlights in Mineralogical Crystallography (pp. 1-30). De Gruyter.
- Li, L., Zhang, X., Yun, H., & Li, G. (2017). Complex hierarchical microstructures of Cambrian mollusk Pelagiella: Insight into early biomineralization and evolution. Scientific Reports, 7(1), 1935. https://doi.org/10.1038/s41598-017-02235-9
- Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NIO. Industrial & Engineering Chemistry Research, 50(17), 10017–10023. https://doi.org/10.1021/ie200271d
- Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R. I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20(1), 25. https://doi.org/10.3390/md20010025
- Nakamura, A., De Almeida, A. C., Riera, H. E., De Araújo, J. L. F., Gouveia, V. J. P., De Carvalho, M. D., & Cardoso, A. V., (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Materials Research, 17(suppl 1), 15–22. https://doi.org/10.1590/S1516-14392014005000044
- Pokroy, B., Fieramosca, J. S., Von Dreele, R. B., Fitch, A. N., Caspi, E. N., & Zolotoyabko, E. (2007). Atomic structure of biogenic aragonite. Chemistry of Materials, 19(13), 3244-3251. https://doi.org/10.1021/cm070187u
- Qian, Y. (1999). Taxonomy and biostratigraphy of small shelly fossils in China. In Qian, Y. (Ed.), Taxonomy and biostratigraphy of small shelly fossils in China (pp. 216–219). Science Press.
- Somasundaran, P., & Agar, G. (1967). The zero point of charge of calcite. Journal of Colloid and Interface Science, 24(4), 433–440. https://doi.org/10.1016/0021-9797(67)90241-x
- Spann, N., Harper, E. M., & Aldridge, D. C. (2010). The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. The Science of Nature, 97(8), 743–751. https://doi.org/10.1007/s00114-010-0692-9
- Sverjensky, D. A. (1994). Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochimica Et Cosmochimica Acta, 58(14), 3123–3129. https://doi.org/10.1016/0016-7037(94)90184-8
- Ulagesan, S., Krishnan, S., Nam, T. J., & Choi, Y. H. (2022). A review of bioactive compounds in oyster shell and tissues. Frontiers in Bioengineering and Biotechnology, 10, 913839. https://doi.org/10.3389/fbioe.2022.913839
- USGS. (2001). USGS OFR01-041: X-Ray Diffraction Primer, U. S. Geological Survey Open-File Report 01-041. Retrieved on January 28, 2024, frpö https://pubs.usgs.gov/of/2001/of01-041/htmldocs/xrpd.htm
- Yi, Q., & Bengtson, S. (1989). Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Universitetsforlaget. https://doi.org/10.18261/8200374157-1989-01
- Yildiz, H., Berber, S., Acarli, S., & Vural, P. (2011). Seasonal variation in the condition index, meat yield and biochemical composition of the flat oyster Ostrea edulis (Linnaeus, 1758) from the Dardanelles, Turkey. Italian Journal of Animal Science, 10(1), e5. https://doi.org/10.4081/ijas.2011.e5