Microalgae known as third generation technology for biofuel in nature are used as a renewable bioenergy source. Microalgae and crop plants have common for the production of organic compounds by using sunlight and carbon dioxide. In addition, microalgae are capable of being reproducing in the whole year allowing the more product yield than those of plants. Therefore, microalgae are more favorable feedstock since they have some advantages such as photosynthetic efficiency, biomass productivity and oil content. In this study, the most proper conditions for the growth of microalgae Chlorella vulgaris were studied. After medium optimization, at 25°C and pH of 9 using 24-hour-illuminating/day, the best growth conditions for C. vulgaris giving the maximum biomass productivity was found to be 205 mg/L for 10 days. Determination of optimal microalgal growth conditions may lead to an increase in the industrial applications of C. vulgaris.
Scientific Research Project Office of Manisa Celal Bayar University
Project Number
2018-114
Thanks
This study was a part of a project funded by the Scientific Research Project Office of Manisa Celal Bayar University (Project No: 2018-114) and the author wishes to thank the office for their financial support.
References
Bach, Q. V. & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246: 88-100. https://doi.org/10.1016/ j.biortech.2017.06.087
Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6): 1146-1151. https://doi.org/10.1590/1678-457x.13417
Ebrahimian, A., Kariminia, H.-R. & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71: 502-508. https://doi.org/10.1016/j.renene.2014.05.031
Elrayies, G. M. (2018). Microalgae: prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81: 1175-1191. https://doi.org/10.1016/j.rser.2017.08. 032
Faried, M., Samer, M., Abdelsalam, E., Yousef, R., Attia, Y. & Ali, A. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79: 893-913. https://doi.org/10.1016/j.rser.2017.05.199
Jankowska, E., Sahu, A. K. & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75: 692-709. https://doi.org/10.1016/j.rser.2016.11.045
Luangpipat, T. & Chisti, Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae–effects of salinity and other factors. Journal of Biotechnology, 257: 47-57. https://doi.org/10.3844/ojbsci.2015.260.267
Mathimani, T., Bhumathi, D., Ahamed, T. S., Dineshbabu, G., Deviram, G., Uma, L. & Prabaharan, D. (2017). Semicontinuous outdoor cultivation and efficient harvesting of marine Chlorella vulgaris BDUG 91771 with minimum solid co-precipitation and high floc recovery for biodiesel. Energy Conversion and Management, 149: 13-25. https://doi.org/10.1016/ j.enconman.2017.06.077
Sasi, D. (2009). Biokinetic behaviour of Chlorella vulgaris in a continuously stirred bioreactor and a circulating loop photobioreactor. Master Thesis, University of Saskatchewan, Canada.
Serra-Maia, R., Bernard, O., Gonçalves, A., Bensalem, S. & Lopes, F. (2016). Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research, 18: 352-359. https://doi.org/10.1016/ j.algal.2016.06.016
Suthar, S. & Verma, R. (2018). Production of Chlorella vulgaris under varying nutrient and abiotic conditions: A potential microalga for bioenergy feedstock. Process Safety and Environmental Protection, 113: 141-148. https://doi.org/10.1016/j.psep.2017.09.018
Tan, X. B., Lam, M. K., Uemura, Y., Lim, J. W., Wong, C. Y. & Lee, K. T. (2018). Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chinese Journal of Chemical Engineering, 26(1): 17-30. https://doi.org/10.1016/j.cjche.2017.08. 010
Tijani, H., Abdullah, N. & Yuzir, A. (2015). Integration of microalgae biomass in biomethanation systems. Renewable and Sustainable Energy Reviews, 52: 1610-1622. https://doi.org/10.1016/j.rser.2015.07.179
Year 2020,
Volume: 9 Issue: 2, 114 - 117, 31.12.2020
Bach, Q. V. & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246: 88-100. https://doi.org/10.1016/ j.biortech.2017.06.087
Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6): 1146-1151. https://doi.org/10.1590/1678-457x.13417
Ebrahimian, A., Kariminia, H.-R. & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71: 502-508. https://doi.org/10.1016/j.renene.2014.05.031
Elrayies, G. M. (2018). Microalgae: prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81: 1175-1191. https://doi.org/10.1016/j.rser.2017.08. 032
Faried, M., Samer, M., Abdelsalam, E., Yousef, R., Attia, Y. & Ali, A. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79: 893-913. https://doi.org/10.1016/j.rser.2017.05.199
Jankowska, E., Sahu, A. K. & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75: 692-709. https://doi.org/10.1016/j.rser.2016.11.045
Luangpipat, T. & Chisti, Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae–effects of salinity and other factors. Journal of Biotechnology, 257: 47-57. https://doi.org/10.3844/ojbsci.2015.260.267
Mathimani, T., Bhumathi, D., Ahamed, T. S., Dineshbabu, G., Deviram, G., Uma, L. & Prabaharan, D. (2017). Semicontinuous outdoor cultivation and efficient harvesting of marine Chlorella vulgaris BDUG 91771 with minimum solid co-precipitation and high floc recovery for biodiesel. Energy Conversion and Management, 149: 13-25. https://doi.org/10.1016/ j.enconman.2017.06.077
Sasi, D. (2009). Biokinetic behaviour of Chlorella vulgaris in a continuously stirred bioreactor and a circulating loop photobioreactor. Master Thesis, University of Saskatchewan, Canada.
Serra-Maia, R., Bernard, O., Gonçalves, A., Bensalem, S. & Lopes, F. (2016). Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research, 18: 352-359. https://doi.org/10.1016/ j.algal.2016.06.016
Suthar, S. & Verma, R. (2018). Production of Chlorella vulgaris under varying nutrient and abiotic conditions: A potential microalga for bioenergy feedstock. Process Safety and Environmental Protection, 113: 141-148. https://doi.org/10.1016/j.psep.2017.09.018
Tan, X. B., Lam, M. K., Uemura, Y., Lim, J. W., Wong, C. Y. & Lee, K. T. (2018). Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chinese Journal of Chemical Engineering, 26(1): 17-30. https://doi.org/10.1016/j.cjche.2017.08. 010
Tijani, H., Abdullah, N. & Yuzir, A. (2015). Integration of microalgae biomass in biomethanation systems. Renewable and Sustainable Energy Reviews, 52: 1610-1622. https://doi.org/10.1016/j.rser.2015.07.179
Deniz, İ. (2020). Determination of Growth Conditions for Chlorella vulgaris. Marine Science and Technology Bulletin, 9(2), 114-117. https://doi.org/10.33714/masteb.717126
AMA
Deniz İ. Determination of Growth Conditions for Chlorella vulgaris. Mar. Sci. Tech. Bull. December 2020;9(2):114-117. doi:10.33714/masteb.717126
Chicago
Deniz, İrem. “Determination of Growth Conditions for Chlorella Vulgaris”. Marine Science and Technology Bulletin 9, no. 2 (December 2020): 114-17. https://doi.org/10.33714/masteb.717126.
EndNote
Deniz İ (December 1, 2020) Determination of Growth Conditions for Chlorella vulgaris. Marine Science and Technology Bulletin 9 2 114–117.
IEEE
İ. Deniz, “Determination of Growth Conditions for Chlorella vulgaris”, Mar. Sci. Tech. Bull., vol. 9, no. 2, pp. 114–117, 2020, doi: 10.33714/masteb.717126.
ISNAD
Deniz, İrem. “Determination of Growth Conditions for Chlorella Vulgaris”. Marine Science and Technology Bulletin 9/2 (December 2020), 114-117. https://doi.org/10.33714/masteb.717126.
JAMA
Deniz İ. Determination of Growth Conditions for Chlorella vulgaris. Mar. Sci. Tech. Bull. 2020;9:114–117.
MLA
Deniz, İrem. “Determination of Growth Conditions for Chlorella Vulgaris”. Marine Science and Technology Bulletin, vol. 9, no. 2, 2020, pp. 114-7, doi:10.33714/masteb.717126.
Vancouver
Deniz İ. Determination of Growth Conditions for Chlorella vulgaris. Mar. Sci. Tech. Bull. 2020;9(2):114-7.