Review
BibTex RIS Cite

Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality

Year 2021, Volume: 10 Issue: 3, 286 - 294, 22.09.2021
https://doi.org/10.33714/masteb.972128

Abstract

Excessive generation of wastewater is one of the major reasons for pollution in natural reservoirs. Given the normal circumstances, natural water bodies revive and rejuvenate themselves; but upon increased waste load, the self-revival system of the ecosystem slows down, causing water pollution. Hazardous waste, especially heavy metals and organic pollutants, have affected the ecology to the detriment of humans. Thus, the need arises for wastewater treatment, before its discharge. Current methods undertaken include the use of physical settling of solid waste, filtration, aerobic and anaerobic microbes, and chemical treatments. Low removal of pathogens, dependence on the uninterrupted power supply, high maintenance cost, generation of explosive biogas and bioaccumulation of chemicals are some disadvantages of activated sludge technology, one of the modern technologies used. Hence, the focus has been shifted on organisms capable of metabolizing, immobilizing or absorbing toxic compounds from their environment, making it both environment-friendly and cost-effective. This review provides perspicacity about the generation of sewage and the various methods available for its treatment. Emphasis is made on bioremediation using Spirulina platensis. Since the organism assimilates the bioavailable contaminants of sewage water photosynthetically; it can overcome the demerits of conventional methods. It also discusses possibilities of using Spirulina grown on the sewage as a food supplement, animal fodder or source of bioactive compounds.

Thanks

We acknowledge the financial support received from University of Mumbai as Minor Research Project.

References

  • Abou-Shanab, R. A., Hwang, J., Cho, Y., Min, B., & Jeon, B. (2011). Characterization of microalgal species isolated from freshwater bodies as a potential source for biodiesel production. Applied Energy, 88(10), 3300-3306. https://doi.org/10.1016/j.apenergy.2011.01.060
  • Al-Dhabi, N. A. (2013). Heavy metal analysis in commercial Spirulina products for human consumption. Saudi Journal of Biological Sciences, 2(4), 383–388. https://doi.org/10.1016/j.sjbs.2013.04.006
  • Al-Homaidan, A. A., Al-Abbad, A. F., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabdullatif, J. A. (2015). Lead removal by Spirulina platensis biomass. International Journal of Phytoremediation, 18(2), 184-189. https://doi.org/10.1080/15226514.2015.1073673
  • Amin, M., Alazba, A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014, 1-24, https://doi.org/10.1155/2014/825910
  • Anwer, R., Khursheed, S., & Fatma, R. (2012). Detection of Immunoactive Insulin in Spirulina. Journal of Applied Phycology, 24, 583-591. https://doi.org/10.1007/s10811-011-9757-1
  • Barrón, B. L., Torres-Valencia, J. M., Chamorro-Cevallos, G., & Zúñiga-Estrada, A. (2007). Spirulina as an antiviral agent. In M. E. Gershwin & A. Belay (Eds.), Spirulina in Human Nutrition and Health (1st ed., pp. 227-240). CRC Press.
  • Beauvais-Flück, R., Slaveykova, V., & Cosio, C. (2018). Molecular effects of inorganic and methyl mercury in aquatic primary producers: Comparing impact to a macrophyte and a green microalga in controlled conditions. Geosciences, 8(11), 393. https://doi.org/10.3390/geosciences8110393
  • Boone, D. R., & Castenholz, R. W. (2001). Volume One : The Archaea and the deeply branching and phototrophic bacteria. In G. M. Garrity (Ed.), Bergey's manual of Systematic Bacteriology (Vol. 1, p. 722). Springer-Verlag.
  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63-67. https://doi.org/10.1016/s0960-8524(99)00144-3
  • Buchweitz, M. (2016). Natural solutions for blue colors in food. In R. Carle, & R. Schweiggert (Eds.), Handbook on Natural Pigments in Food and Beverages (pp. 355-384). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100371-8.00017-8
  • Capelli, B., & Cysewski, G. (2010). Potential health benefits of Spirulina microalgae. Nutrafoods, 9(2), 19-26. https://doi.org/10.1007/bf03223332
  • Çelekli, A., Yavuzatmaca, M., & Bozkurt, H. (2012). An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of Hazardous Materials, 173(1-3), 123-129. https://doi.org/10.1016/j.jhazmat.2009.08.057
  • Cepoia, L., & Zinicovscaia, I. (2002). Spirulina platensis as a model object for the environment bioremediation studies. In O. Konur (Ed.), Handbook of Algal Science, Technology and Medicine (pp. 629-640). Academic Press.
  • Chamorro, G., & Salazar, M. (1990). Estudio teratogénico de Spirulina en ratón [Teratogenic study of Spirulina in mice]. Archivos Latinoamericanos de Nutrición, 40(1), 86-94.
  • Chen, H., & Pan, S. (2002). Bioremediation potential of Spirulina: Toxicity and biosorption studies of lead. Journal of Zhejiang University Science B, 6B(3), 171-174. https://doi.org/10.1631/jzus.2005.b0171
  • Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59(1), 75-84. https://doi.org/10.1016/j.chemosphere.2004.10.005
  • Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47(4), 551-578.
  • Deng, X., & Wang, P. (2012). Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource Technology, 121, 342–347. https://doi.org/10.1016/j.biortech.2012.07.017
  • Doke, J., Kalyanraman, V., & Ghole, V. (2015). Bioremediation potential of Spirulina sp.: Toxicity and sorption studies of Co and Pb. International Journal on Algae, 7(2), 118-128. https://doi.org/10.1615/InterJAlgae.v7.i2.30
  • Dolatabadi, S., & Hosseini, S. (2016). Wastewater treatment using Spirulina platensis. Journal of Chemical, Biological and Physical Sciences, 6(4), 1239-1246.
  • Doshi, H., Ray, A., & Kothari, I. L. (2007). Bioremediation potential of live and dead S. platensis: Spectroscopic, kinetics and SEM studies. Biotechnology and Bioengineering, 96(6), 1051-1063. https://doi.org/10.1002/bit.21190
  • Dotto, G., Cadaval, T., & Pinto, L. (2012). Use of Spirulina platensis micro and nanoparticles for the removal of synthetic dyes from aqueous solutions by biosorption. Process Biochemistry, 47(9), 1335-1343. https://doi.org/10.1016/j.procbio.2012.04.029
  • Doyle, R. J., Matthews, T. H., & Streips, U. N. (1980). Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. Journal of Bacteriology, 143(1), 471-480. https://doi.org/10.1128/JB.143.1.471-480.1980
  • Elleuch, B., Bouhamed, F., Elloussaief, M., & Jaghbir, M. (2018). Environmental sustainability and pollution prevention. Environmental Science and Pollution Research, 25(19), 18223–18225. https://doi.org/10.1007/s11356-017-0619-5
  • Eriksen, N. T. (2008). Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14. https://doi.org/10.1007/s00253-008-1542-y
  • Falquet, J. (2008). The nutritional aspects of Spirulina. Antennae Technologies. Switzerland.
  • Fariduddin, Q., Varshney, P., & Ali, A. (2017). The perspective of nitrate assimilation and bioremediation in Spirulina platensis (a non-nitrogen fixing cyanobacterium): An overview. Journal of Environmental Biology, 39(5), 547-557. https://doi.org/10.22438/jeb/39/5/MS-172
  • Fukuda, S., Lwamoto, K., Asumi, M., Yokoyama, A., Nakayama, T., Ishida, K., Inouye, I., & Shraiwa, I. (2014). Global searches for microalgae and aquatic plants that can eliminate radioactive caesium, iodine and strontium from the radio-polluted aquatic environment. Journal of Plant Research, 127, 79-89. https://doi.org/10.1007/s10265-013-0596-9
  • Geitler, L. (1925). Cyanophyceae. In A. Pascher (Ed.), Die Süsswasser-Flora Deutschlands, Österreichs und der Schweiz, 12 (pp. 1-450). Jena: Gustav Fischer.
  • Gomont, M. (1892). Monographie des Oscillariées (Nostocacées Homocystées) [Oscillariate Monograph (Homocysted Nostocaceae)]. Annales des Sciences Naturelles Botanique, 7(16), 91-264.
  • Gouma, S., Fragoeiro, S., Bastos, A., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. In S. Das (Ed.), Microbial biodegradation and bioremediation (pp. 301-323). Elsevier. https://doi.org/10.1016/b978-0-12-800021-2.00013-3
  • Gupta, S., Mohan, K., Prasad, R., Gupta, S., & Kansal, A. (1998). Solid waste management in India: options and opportunities. Resources, Conservation & Recycling, 24(2), 137–154 https://doi.org/10.1016/s0921-3449(98)00033-0
  • Habib, M., Parvin, M., Huntington, T., & Hasan, M. (2008). A review on culture, production and use of spirulina as food for humans and feed for domestic animals and fish. FAO Fish. Aquaculture Circular No. 1034. FAO, Rome.
  • Hayashi, K., Hayashi, T., & Kojima, J. (1996). A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15), 1463-1471. https://doi.org/10.1089/aid.1996.12.1463
  • Hosseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. (2013) Nutritional and medical applications of Spirulina microalgae. Mini-Reviews in Medicinal Chemistry, 13(8), 1231-1237. https://doi.org/10.2174/1389557511313080009
  • Juwarkar, A., Singh, S., & Mudhoo, A. (2001). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology, 9(3), 215-288. https://doi.org/10.1007/s11157-010-9215-6
  • Khan, Z., Bhadouria, P., & Bisen, P. (2005) Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379. https://doi.org/10.2174/138920105774370607
  • Komárek, J., & Lund, J. W. G. (1998). What is Spirulina platensis in fact? Algological Studies, 58, 1-13.
  • Kőnig-Péter, A., Csudai, C., Felinger, A., Kilár, F., & Pernyeszi, T. (2014). Potential of various biosorbents for Zn(II) removal. Water, Air, & Soil Pollution, 225(2089), 1-9. https://doi.org/10.1007/s11270-014-2089-4
  • Koristka, C. (1891) Archiv für die naturwissenschaftliche Landesdurchforschung von Böhmen [Archive for the scientific research of the country of Bohemia]. Forgotten Books.
  • Kulkarni, S. D., Auti, T., & Saraf, S. (2010). Bioremediation study of dairy effluent by using Spirulina platensis. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 1(6), 317-325. https://doi.org/10.26479/2016.0106.04
  • Kumar, B. N. P., Mahaboobi, S., & Satyam, S. (2016). Cyanobacteria: A potential natural source for drug discovery and bioremediation. Journal of Industrial Pollution Control, 32(2), 508-517. https://doi.org/10.3389/fmicb.2016.00529
  • Mackay, D., & Frasar, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110(3), 375-391. https://doi.org/10.1016/S0269-7491(00)00162-7
  • Martinez, M. E., Sanchez, S., Jimenez, J. M., Yousf, F. E., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scendesmus obliquus. Bioresource Technology, 73(3), 263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  • Mary Leema, J. T., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., & Karthikayulu, S. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221–9227. https://doi.org/10.1016/j.biortech.2010.06.120
  • Masojídek, J., & Torzillo, G. (2008). Mass cultivation of freshwater microalgae. Encyclopedia of Ecology, 2008, 2226–2235. https://doi.org/10.1016/b978-008045405-4.00830-2
  • Mehta, S., Tripathi, B., & Gaur, J. (2002). Enhanced sorption of Cu2+ and Ni2+ by acid-pretreated Chlorella vulgaris from single and binary metal solutions. Journal of Applied Phycology, 14, 267-273. https://doi.org/10.1023/a:1021149119472
  • Miazek, K., Iwanek, W., Remacle, C., Richel, A., & Goffin, D. (2015). Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review. International Journal of Molecular Sciences, 16(10), 23929–23969. https://doi.org/10.3390/ijms161023929
  • Michalak, I., Mironiuk, M., Godlewska, K., Trynda, J., & Marycz, K. (2019). Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochemistry, 88, 129-137. https://doi.org/10.1016/j.procbio.2019.10.004
  • Murali, O. M., & Mehar, S. K. (2014). Bioremediation of heavy metals using Spirulina. International Journal of Geology, Earth & Environmental Sciences, 4(1), 244-249.
  • Murthy, S. D. S., Sabat, S. C., & Mohanty, P. (1989). Mercury-induced inhibition of photosystem ii activity and changes in the emission of fluorescence from phycobilisomes in intact cells of the Cyanobacterium, Spirulina platensis. Plant Cell Physiology, 30(8), 1153–1157. https://doi.org/10.1093/oxfordjournals.pcp.a077858
  • Nalimova, A. A., Popova, V. V., Tsoglin, L. N., & Pronina, N. A. (2005). The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells. Russian Journal of Plant Physiology, 52(2), 229-234. https://doi.org/10.1007/s11183-005-0035-4
  • Palaniswamy, R., & Veluchamy, A. (2017). Biosorption of heavy metals by Spirulina platensis from electroplating industrial effluent. Environmental Science: An Indian Journal, 13(4), 139.
  • Paramanya, A., Jha, P., & Ali, A. (2019). Bioactive compounds in Spirulina sp.: Applications and potential health effects. In J. K. Sundaray, & M. A. Rather (Eds.), Next generation research in aquaculture (pp.197–218). Bio-Green Books.
  • Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. Botanical Review, 66, 379-422. https://doi.org/10.1007/BF02868923
  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (1994). Soil and environmental quality. Lewis Publisher.
  • Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3(3), 299-304.
  • Priyadarshini, E., Priyadarshini, S. S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103, 3297-3316. https://doi.org/10.1007/s00253-019-09685-3
  • Rangsayatorn, N., Pokethitiyook, P., & Upatham, E. (2004). Cadmium biosorption by cells of S. platensis TISTR 8217 immobilized in alginate and silica gel. Environment International, 30(1), 57-63. https://doi.org/10.1016/S0160-4120(03)00146-6
  • Rehman, A., Ali, A., Muneer, B., & Shakoori, A. R. (2007). Resistance and biosorption of mercury by bacteria isolated from industrial effluents. Pakistan Journal of Zoology, 39(3), 137-146.
  • Richmond, A. E. (1986). Microalgae. Critical Reviews in Biotechnology, 4(4), 349-438. https://doi.org/10.3109/07388558609150801
  • Samantaray, D., Mohapatra, S., & Mishra, B. B. (2014). Microbial bioremediation of industrial effluents. In S. Das (Eds.), Microbial biodegradation and bioremediation (pp. 325–339). Elsevier. https://doi.org/10.1016/b978-0-12-800021-2.00014-5
  • Sánchez, M., Bernal-Castillo, J., Rozo, C., & Rodríguez, I. (2003). Spirulina (Arthrospira): An edible microorganism. A review. Universitas Scientiarum, 8, 7-24.
  • Saurav, K., & Kannabiran, K. (2011). Biosorption of Cr(III) and Cr(VI) by Streptomyces VITSVK9 spp. Annals of Microbiology, 61(4), 833-841. https://doi.org/10.1007/s13213-011-0204-y
  • Shi, W., Wang, L., Rousseau, D., & Lens, P. (2010). Removal of estrone, 17α-ethinylestradiol, and 17β-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17, 824-833. https://doi.org/10.1007/s11356-010-0301-7
  • Soeprobowati, T. R., & Hariyati, R. (2014). Phycoremediation of Pb+2, Cd+2, Cu+2, and Cr+3 by Spirulina platensis (Gomont) Geitler. American Journal of BioScience, 2(4), 165-170. https://doi.org/10.11648/j.ajbio.20140204.18
  • Sperling, M. (2007). Basic principles of wastewater treatment. IWA Publishing.
  • Tabagari, I., Kurashvili, M., Varazi, T., Adamia, G., Gigolashvili, G., Pruidze, M., Chokheli, L., Khatisashvili, G., & Niemsdorf, P. (2019). Application of Arthrospira (Spirulina) platensis against chemical pollution of water. Water, 11(9), 1759. https://doi.org/10.3390/w11091759
  • Tanticharoen, M., Reungjitchachawali, M., Boonag, B., Vonktaveesuk, P., Vonshak, A., & Cohen, Z. (2009). Optimization of gamma-linolenic acid (GLA) production in Spirulina platensis. Journal of Applied Phycology, 6, 295-300. https://doi.org/10.1007/BF02181942
  • Tchounwou, P., Yedjou, C., Patlolla, A., & Sutton, D. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133-164). Experientia Supplementum, 101. Springer. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Thomson, A. M., & Kurup, G. (2010). Heavy metal tolerance and metal induced oxidative stress in Spirulina platensis. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 12(2), 461-468.
  • Tomsett, A. B., & Thurman, D. A. (1988). Molecular biology of metal tolerances of plants. Plant, Cell & Environment, 11(5), 383-394. https://doi.org/10.1111/j.1365-3040.1988.tb01362.x
  • Torzilla, G., & Vonshak, A. (1994). Effect of light and temperature on photosynthetic activity of the cyanobacterium S. platensis. Biomass & Bioenergy, 6(5), 399-408. https://doi.org/10.1016/0961-9534(94)00076-6
  • United Nations Environment Programme. (2002). First National Communication of Kenya to the Conference of the Parties to the United Nations Framework Convention on Climate Change (pp. 172). Retrieved on January 30, 2021, from http://wedocs.unep.org/
  • Vo, T., Ngo, D., & Kim, S. (2008). Nutritional and pharmaceutical properties of microalgal Spirulina. In S. Kim (Ed.), Handbook of marine microalgae (pp. 299-308). Academic Press. https://doi.org/10.1016/b978-0-12-800776-1.00019-4
  • Vonshak, A., Chanawongse, L., Bunnag, B., & Tanticharoen, M. (1996). Light acclimation and photoinhibition in three Spirulina platensis (Cyanobacteria) isolates. Journal of Applied Phycology, 8, 35-40.
  • Wan, D., Wu, Q., & Kuča, K. (2016). Spirulina. In R. C. Gupta (Ed.), Nutraceuticals: Efficacy, safety and toxicity (pp. 569-583). Academic Press. https://doi.org/10.1016/C2014-0-01870-9
  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  • Wexler, P. (2004). Encyclopedia of toxicology. 3rd ed. Academic Press.
  • Whitton, B. (1992). Diversity, ecology and taxonomy of the Cyanobacteria. In N. Mann, & N. Carr (Eds.), Photosynthetic Prokaryotes (pp. 1-37). Biotechnology Handbooks, vol 6. Springer.
  • World Commission on Environment and Development. (1987). Our common future. Oxford University Press.
Year 2021, Volume: 10 Issue: 3, 286 - 294, 22.09.2021
https://doi.org/10.33714/masteb.972128

Abstract

References

  • Abou-Shanab, R. A., Hwang, J., Cho, Y., Min, B., & Jeon, B. (2011). Characterization of microalgal species isolated from freshwater bodies as a potential source for biodiesel production. Applied Energy, 88(10), 3300-3306. https://doi.org/10.1016/j.apenergy.2011.01.060
  • Al-Dhabi, N. A. (2013). Heavy metal analysis in commercial Spirulina products for human consumption. Saudi Journal of Biological Sciences, 2(4), 383–388. https://doi.org/10.1016/j.sjbs.2013.04.006
  • Al-Homaidan, A. A., Al-Abbad, A. F., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabdullatif, J. A. (2015). Lead removal by Spirulina platensis biomass. International Journal of Phytoremediation, 18(2), 184-189. https://doi.org/10.1080/15226514.2015.1073673
  • Amin, M., Alazba, A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014, 1-24, https://doi.org/10.1155/2014/825910
  • Anwer, R., Khursheed, S., & Fatma, R. (2012). Detection of Immunoactive Insulin in Spirulina. Journal of Applied Phycology, 24, 583-591. https://doi.org/10.1007/s10811-011-9757-1
  • Barrón, B. L., Torres-Valencia, J. M., Chamorro-Cevallos, G., & Zúñiga-Estrada, A. (2007). Spirulina as an antiviral agent. In M. E. Gershwin & A. Belay (Eds.), Spirulina in Human Nutrition and Health (1st ed., pp. 227-240). CRC Press.
  • Beauvais-Flück, R., Slaveykova, V., & Cosio, C. (2018). Molecular effects of inorganic and methyl mercury in aquatic primary producers: Comparing impact to a macrophyte and a green microalga in controlled conditions. Geosciences, 8(11), 393. https://doi.org/10.3390/geosciences8110393
  • Boone, D. R., & Castenholz, R. W. (2001). Volume One : The Archaea and the deeply branching and phototrophic bacteria. In G. M. Garrity (Ed.), Bergey's manual of Systematic Bacteriology (Vol. 1, p. 722). Springer-Verlag.
  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63-67. https://doi.org/10.1016/s0960-8524(99)00144-3
  • Buchweitz, M. (2016). Natural solutions for blue colors in food. In R. Carle, & R. Schweiggert (Eds.), Handbook on Natural Pigments in Food and Beverages (pp. 355-384). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100371-8.00017-8
  • Capelli, B., & Cysewski, G. (2010). Potential health benefits of Spirulina microalgae. Nutrafoods, 9(2), 19-26. https://doi.org/10.1007/bf03223332
  • Çelekli, A., Yavuzatmaca, M., & Bozkurt, H. (2012). An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of Hazardous Materials, 173(1-3), 123-129. https://doi.org/10.1016/j.jhazmat.2009.08.057
  • Cepoia, L., & Zinicovscaia, I. (2002). Spirulina platensis as a model object for the environment bioremediation studies. In O. Konur (Ed.), Handbook of Algal Science, Technology and Medicine (pp. 629-640). Academic Press.
  • Chamorro, G., & Salazar, M. (1990). Estudio teratogénico de Spirulina en ratón [Teratogenic study of Spirulina in mice]. Archivos Latinoamericanos de Nutrición, 40(1), 86-94.
  • Chen, H., & Pan, S. (2002). Bioremediation potential of Spirulina: Toxicity and biosorption studies of lead. Journal of Zhejiang University Science B, 6B(3), 171-174. https://doi.org/10.1631/jzus.2005.b0171
  • Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59(1), 75-84. https://doi.org/10.1016/j.chemosphere.2004.10.005
  • Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47(4), 551-578.
  • Deng, X., & Wang, P. (2012). Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource Technology, 121, 342–347. https://doi.org/10.1016/j.biortech.2012.07.017
  • Doke, J., Kalyanraman, V., & Ghole, V. (2015). Bioremediation potential of Spirulina sp.: Toxicity and sorption studies of Co and Pb. International Journal on Algae, 7(2), 118-128. https://doi.org/10.1615/InterJAlgae.v7.i2.30
  • Dolatabadi, S., & Hosseini, S. (2016). Wastewater treatment using Spirulina platensis. Journal of Chemical, Biological and Physical Sciences, 6(4), 1239-1246.
  • Doshi, H., Ray, A., & Kothari, I. L. (2007). Bioremediation potential of live and dead S. platensis: Spectroscopic, kinetics and SEM studies. Biotechnology and Bioengineering, 96(6), 1051-1063. https://doi.org/10.1002/bit.21190
  • Dotto, G., Cadaval, T., & Pinto, L. (2012). Use of Spirulina platensis micro and nanoparticles for the removal of synthetic dyes from aqueous solutions by biosorption. Process Biochemistry, 47(9), 1335-1343. https://doi.org/10.1016/j.procbio.2012.04.029
  • Doyle, R. J., Matthews, T. H., & Streips, U. N. (1980). Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. Journal of Bacteriology, 143(1), 471-480. https://doi.org/10.1128/JB.143.1.471-480.1980
  • Elleuch, B., Bouhamed, F., Elloussaief, M., & Jaghbir, M. (2018). Environmental sustainability and pollution prevention. Environmental Science and Pollution Research, 25(19), 18223–18225. https://doi.org/10.1007/s11356-017-0619-5
  • Eriksen, N. T. (2008). Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14. https://doi.org/10.1007/s00253-008-1542-y
  • Falquet, J. (2008). The nutritional aspects of Spirulina. Antennae Technologies. Switzerland.
  • Fariduddin, Q., Varshney, P., & Ali, A. (2017). The perspective of nitrate assimilation and bioremediation in Spirulina platensis (a non-nitrogen fixing cyanobacterium): An overview. Journal of Environmental Biology, 39(5), 547-557. https://doi.org/10.22438/jeb/39/5/MS-172
  • Fukuda, S., Lwamoto, K., Asumi, M., Yokoyama, A., Nakayama, T., Ishida, K., Inouye, I., & Shraiwa, I. (2014). Global searches for microalgae and aquatic plants that can eliminate radioactive caesium, iodine and strontium from the radio-polluted aquatic environment. Journal of Plant Research, 127, 79-89. https://doi.org/10.1007/s10265-013-0596-9
  • Geitler, L. (1925). Cyanophyceae. In A. Pascher (Ed.), Die Süsswasser-Flora Deutschlands, Österreichs und der Schweiz, 12 (pp. 1-450). Jena: Gustav Fischer.
  • Gomont, M. (1892). Monographie des Oscillariées (Nostocacées Homocystées) [Oscillariate Monograph (Homocysted Nostocaceae)]. Annales des Sciences Naturelles Botanique, 7(16), 91-264.
  • Gouma, S., Fragoeiro, S., Bastos, A., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. In S. Das (Ed.), Microbial biodegradation and bioremediation (pp. 301-323). Elsevier. https://doi.org/10.1016/b978-0-12-800021-2.00013-3
  • Gupta, S., Mohan, K., Prasad, R., Gupta, S., & Kansal, A. (1998). Solid waste management in India: options and opportunities. Resources, Conservation & Recycling, 24(2), 137–154 https://doi.org/10.1016/s0921-3449(98)00033-0
  • Habib, M., Parvin, M., Huntington, T., & Hasan, M. (2008). A review on culture, production and use of spirulina as food for humans and feed for domestic animals and fish. FAO Fish. Aquaculture Circular No. 1034. FAO, Rome.
  • Hayashi, K., Hayashi, T., & Kojima, J. (1996). A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15), 1463-1471. https://doi.org/10.1089/aid.1996.12.1463
  • Hosseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. (2013) Nutritional and medical applications of Spirulina microalgae. Mini-Reviews in Medicinal Chemistry, 13(8), 1231-1237. https://doi.org/10.2174/1389557511313080009
  • Juwarkar, A., Singh, S., & Mudhoo, A. (2001). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology, 9(3), 215-288. https://doi.org/10.1007/s11157-010-9215-6
  • Khan, Z., Bhadouria, P., & Bisen, P. (2005) Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379. https://doi.org/10.2174/138920105774370607
  • Komárek, J., & Lund, J. W. G. (1998). What is Spirulina platensis in fact? Algological Studies, 58, 1-13.
  • Kőnig-Péter, A., Csudai, C., Felinger, A., Kilár, F., & Pernyeszi, T. (2014). Potential of various biosorbents for Zn(II) removal. Water, Air, & Soil Pollution, 225(2089), 1-9. https://doi.org/10.1007/s11270-014-2089-4
  • Koristka, C. (1891) Archiv für die naturwissenschaftliche Landesdurchforschung von Böhmen [Archive for the scientific research of the country of Bohemia]. Forgotten Books.
  • Kulkarni, S. D., Auti, T., & Saraf, S. (2010). Bioremediation study of dairy effluent by using Spirulina platensis. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 1(6), 317-325. https://doi.org/10.26479/2016.0106.04
  • Kumar, B. N. P., Mahaboobi, S., & Satyam, S. (2016). Cyanobacteria: A potential natural source for drug discovery and bioremediation. Journal of Industrial Pollution Control, 32(2), 508-517. https://doi.org/10.3389/fmicb.2016.00529
  • Mackay, D., & Frasar, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110(3), 375-391. https://doi.org/10.1016/S0269-7491(00)00162-7
  • Martinez, M. E., Sanchez, S., Jimenez, J. M., Yousf, F. E., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scendesmus obliquus. Bioresource Technology, 73(3), 263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  • Mary Leema, J. T., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., & Karthikayulu, S. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221–9227. https://doi.org/10.1016/j.biortech.2010.06.120
  • Masojídek, J., & Torzillo, G. (2008). Mass cultivation of freshwater microalgae. Encyclopedia of Ecology, 2008, 2226–2235. https://doi.org/10.1016/b978-008045405-4.00830-2
  • Mehta, S., Tripathi, B., & Gaur, J. (2002). Enhanced sorption of Cu2+ and Ni2+ by acid-pretreated Chlorella vulgaris from single and binary metal solutions. Journal of Applied Phycology, 14, 267-273. https://doi.org/10.1023/a:1021149119472
  • Miazek, K., Iwanek, W., Remacle, C., Richel, A., & Goffin, D. (2015). Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review. International Journal of Molecular Sciences, 16(10), 23929–23969. https://doi.org/10.3390/ijms161023929
  • Michalak, I., Mironiuk, M., Godlewska, K., Trynda, J., & Marycz, K. (2019). Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochemistry, 88, 129-137. https://doi.org/10.1016/j.procbio.2019.10.004
  • Murali, O. M., & Mehar, S. K. (2014). Bioremediation of heavy metals using Spirulina. International Journal of Geology, Earth & Environmental Sciences, 4(1), 244-249.
  • Murthy, S. D. S., Sabat, S. C., & Mohanty, P. (1989). Mercury-induced inhibition of photosystem ii activity and changes in the emission of fluorescence from phycobilisomes in intact cells of the Cyanobacterium, Spirulina platensis. Plant Cell Physiology, 30(8), 1153–1157. https://doi.org/10.1093/oxfordjournals.pcp.a077858
  • Nalimova, A. A., Popova, V. V., Tsoglin, L. N., & Pronina, N. A. (2005). The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells. Russian Journal of Plant Physiology, 52(2), 229-234. https://doi.org/10.1007/s11183-005-0035-4
  • Palaniswamy, R., & Veluchamy, A. (2017). Biosorption of heavy metals by Spirulina platensis from electroplating industrial effluent. Environmental Science: An Indian Journal, 13(4), 139.
  • Paramanya, A., Jha, P., & Ali, A. (2019). Bioactive compounds in Spirulina sp.: Applications and potential health effects. In J. K. Sundaray, & M. A. Rather (Eds.), Next generation research in aquaculture (pp.197–218). Bio-Green Books.
  • Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. Botanical Review, 66, 379-422. https://doi.org/10.1007/BF02868923
  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (1994). Soil and environmental quality. Lewis Publisher.
  • Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3(3), 299-304.
  • Priyadarshini, E., Priyadarshini, S. S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103, 3297-3316. https://doi.org/10.1007/s00253-019-09685-3
  • Rangsayatorn, N., Pokethitiyook, P., & Upatham, E. (2004). Cadmium biosorption by cells of S. platensis TISTR 8217 immobilized in alginate and silica gel. Environment International, 30(1), 57-63. https://doi.org/10.1016/S0160-4120(03)00146-6
  • Rehman, A., Ali, A., Muneer, B., & Shakoori, A. R. (2007). Resistance and biosorption of mercury by bacteria isolated from industrial effluents. Pakistan Journal of Zoology, 39(3), 137-146.
  • Richmond, A. E. (1986). Microalgae. Critical Reviews in Biotechnology, 4(4), 349-438. https://doi.org/10.3109/07388558609150801
  • Samantaray, D., Mohapatra, S., & Mishra, B. B. (2014). Microbial bioremediation of industrial effluents. In S. Das (Eds.), Microbial biodegradation and bioremediation (pp. 325–339). Elsevier. https://doi.org/10.1016/b978-0-12-800021-2.00014-5
  • Sánchez, M., Bernal-Castillo, J., Rozo, C., & Rodríguez, I. (2003). Spirulina (Arthrospira): An edible microorganism. A review. Universitas Scientiarum, 8, 7-24.
  • Saurav, K., & Kannabiran, K. (2011). Biosorption of Cr(III) and Cr(VI) by Streptomyces VITSVK9 spp. Annals of Microbiology, 61(4), 833-841. https://doi.org/10.1007/s13213-011-0204-y
  • Shi, W., Wang, L., Rousseau, D., & Lens, P. (2010). Removal of estrone, 17α-ethinylestradiol, and 17β-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17, 824-833. https://doi.org/10.1007/s11356-010-0301-7
  • Soeprobowati, T. R., & Hariyati, R. (2014). Phycoremediation of Pb+2, Cd+2, Cu+2, and Cr+3 by Spirulina platensis (Gomont) Geitler. American Journal of BioScience, 2(4), 165-170. https://doi.org/10.11648/j.ajbio.20140204.18
  • Sperling, M. (2007). Basic principles of wastewater treatment. IWA Publishing.
  • Tabagari, I., Kurashvili, M., Varazi, T., Adamia, G., Gigolashvili, G., Pruidze, M., Chokheli, L., Khatisashvili, G., & Niemsdorf, P. (2019). Application of Arthrospira (Spirulina) platensis against chemical pollution of water. Water, 11(9), 1759. https://doi.org/10.3390/w11091759
  • Tanticharoen, M., Reungjitchachawali, M., Boonag, B., Vonktaveesuk, P., Vonshak, A., & Cohen, Z. (2009). Optimization of gamma-linolenic acid (GLA) production in Spirulina platensis. Journal of Applied Phycology, 6, 295-300. https://doi.org/10.1007/BF02181942
  • Tchounwou, P., Yedjou, C., Patlolla, A., & Sutton, D. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133-164). Experientia Supplementum, 101. Springer. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Thomson, A. M., & Kurup, G. (2010). Heavy metal tolerance and metal induced oxidative stress in Spirulina platensis. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 12(2), 461-468.
  • Tomsett, A. B., & Thurman, D. A. (1988). Molecular biology of metal tolerances of plants. Plant, Cell & Environment, 11(5), 383-394. https://doi.org/10.1111/j.1365-3040.1988.tb01362.x
  • Torzilla, G., & Vonshak, A. (1994). Effect of light and temperature on photosynthetic activity of the cyanobacterium S. platensis. Biomass & Bioenergy, 6(5), 399-408. https://doi.org/10.1016/0961-9534(94)00076-6
  • United Nations Environment Programme. (2002). First National Communication of Kenya to the Conference of the Parties to the United Nations Framework Convention on Climate Change (pp. 172). Retrieved on January 30, 2021, from http://wedocs.unep.org/
  • Vo, T., Ngo, D., & Kim, S. (2008). Nutritional and pharmaceutical properties of microalgal Spirulina. In S. Kim (Ed.), Handbook of marine microalgae (pp. 299-308). Academic Press. https://doi.org/10.1016/b978-0-12-800776-1.00019-4
  • Vonshak, A., Chanawongse, L., Bunnag, B., & Tanticharoen, M. (1996). Light acclimation and photoinhibition in three Spirulina platensis (Cyanobacteria) isolates. Journal of Applied Phycology, 8, 35-40.
  • Wan, D., Wu, Q., & Kuča, K. (2016). Spirulina. In R. C. Gupta (Ed.), Nutraceuticals: Efficacy, safety and toxicity (pp. 569-583). Academic Press. https://doi.org/10.1016/C2014-0-01870-9
  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  • Wexler, P. (2004). Encyclopedia of toxicology. 3rd ed. Academic Press.
  • Whitton, B. (1992). Diversity, ecology and taxonomy of the Cyanobacteria. In N. Mann, & N. Carr (Eds.), Photosynthetic Prokaryotes (pp. 1-37). Biotechnology Handbooks, vol 6. Springer.
  • World Commission on Environment and Development. (1987). Our common future. Oxford University Press.
There are 81 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Review Paper
Authors

Amruta Padgaonkar 0000-0002-0443-2279

Additiya Paramanya 0000-0002-8568-8902

Payal Poojari 0000-0003-2617-7552

Ahmad Ali 0000-0003-4467-5387

Publication Date September 22, 2021
Submission Date July 15, 2021
Acceptance Date August 10, 2021
Published in Issue Year 2021 Volume: 10 Issue: 3

Cite

APA Padgaonkar, A., Paramanya, A., Poojari, P., Ali, A. (2021). Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Marine Science and Technology Bulletin, 10(3), 286-294. https://doi.org/10.33714/masteb.972128
AMA Padgaonkar A, Paramanya A, Poojari P, Ali A. Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Mar. Sci. Tech. Bull. September 2021;10(3):286-294. doi:10.33714/masteb.972128
Chicago Padgaonkar, Amruta, Additiya Paramanya, Payal Poojari, and Ahmad Ali. “Current Insights on Wastewater Treatment and Application of Spirulina Platensis in Improving the Water Quality”. Marine Science and Technology Bulletin 10, no. 3 (September 2021): 286-94. https://doi.org/10.33714/masteb.972128.
EndNote Padgaonkar A, Paramanya A, Poojari P, Ali A (September 1, 2021) Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Marine Science and Technology Bulletin 10 3 286–294.
IEEE A. Padgaonkar, A. Paramanya, P. Poojari, and A. Ali, “Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality”, Mar. Sci. Tech. Bull., vol. 10, no. 3, pp. 286–294, 2021, doi: 10.33714/masteb.972128.
ISNAD Padgaonkar, Amruta et al. “Current Insights on Wastewater Treatment and Application of Spirulina Platensis in Improving the Water Quality”. Marine Science and Technology Bulletin 10/3 (September 2021), 286-294. https://doi.org/10.33714/masteb.972128.
JAMA Padgaonkar A, Paramanya A, Poojari P, Ali A. Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Mar. Sci. Tech. Bull. 2021;10:286–294.
MLA Padgaonkar, Amruta et al. “Current Insights on Wastewater Treatment and Application of Spirulina Platensis in Improving the Water Quality”. Marine Science and Technology Bulletin, vol. 10, no. 3, 2021, pp. 286-94, doi:10.33714/masteb.972128.
Vancouver Padgaonkar A, Paramanya A, Poojari P, Ali A. Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Mar. Sci. Tech. Bull. 2021;10(3):286-94.

27116