Growth, Lipid, and Pigment Properties of Locally Isolated (Kastamonu, Türkiye) Chlorella sp.
Year 2024,
Volume: 13 Issue: 2, 168 - 174, 30.06.2024
Mahmut Elp
,
Yaşar Durmaz
,
Gökhun Çağatay Erbil
Abstract
Chlorella has become one of the most studied and produced microalgae, with Spirulina among the hundreds of species since the beginning of microalgal biotechnology. The growth performance of microalgae and the biochemical composition of the biomass may also vary significantly by strain. Therefore, it is thought that searching for new strains from aquatic environments is important in providing the most suitable microalgae for production. An isolated strain from Daday Stream was cultured in the laboratory at Kastamonu University. BG-11 was used as a medium, and CO2 from the air was used as a carbon source in the experiments. The initial cell number was arranged to 1.0×106 cells mL-1, and the highest cell number was found on the 17th day as 40.52×106 cells mL-1. Chlorophyll a and carotenoids were determined at the end of the experiment and were found as 3.48±0.08 µg mL-1 and 1.16±0.02 µg mL-1, respectively. Total lipid amount and fatty acid composition analysis were also conducted at the end of the study. According to the analyses, the lipid content of Chlorella sp. was found to be 15.37±0.00% (w/w). ∑SFA (saturated fatty acid), ∑MUFA (monounsaturated fatty acid), and ∑PUFA (polyunsaturated fatty acid) ratios were calculated to be 31.30±1.21%, 4.99±0.34% and 63.71±2.65%, respectively.
Ethical Statement
For this type of study, formal consent is not required
Supporting Institution
Kastamonu University
Project Number
KÜ-BAP01/2021-49
Thanks
This research has been supported by Kastamonu University Scientific Research Projects Coordination Department. Project Number : KÜ-BAP01/2021-49
References
- Anto, S., Pugazhendhi, A., & Mathimani, T. (2019). Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock. Biocatalysis and Agricultural Biotechnology, 20, 101179. https://doi.org/10.1016/j.bcab.2019.101179
- Asadi, P., Rad, H. A., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa. 91 in post treatment of dairy wastewater treatment plant effluents. Environmental Science and Pollution Research, 26, 29473-29489. https://doi.org/10.1007/s11356-019-06051-8
- Bellinger, E. G., & Sigee, D. C. (2010). A key to the more frequently occurring freshwater algae. In Bellinger, E. G., & Sigee, D. C. (Eds.), Freshwater algae: Identification, enumeration and use as bioindicators (pp. 137-244). John Wiley & Sons. https://doi.org/10.1002/9781118917152.ch4
- Chia, M. A., Lombardi, A. T., & Melão, M. da G. G. (2013). Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais da Academia Brasileira de Ciencias, 85(4), 1427–1438. https://doi.org/10.1590/0001-3765201393312
- Chu, P. -N., Chu, F. -F., Zhang, Y., Wu, C., & Zeng, R. J. (2015). A robust direct-transesterification method for microalgae. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(23), 2583-2590. https://doi.org/10.1080/15567036.2012.733481
- Dahiya, S., Chowdhury, R., Tao, W., & Kumar, P. (2021). Biomass and lipid productivity by two algal strains of Chlorella sorokiniana grown in hydrolysate of water hyacinth. Energies, 14(5), 1411. https://doi.org/10.3390/en14051411
- Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. https://doi.org/10.1016/j.algal.2020.101811
- Erbil, G. Ç., Durmaz, Y., & Elp, M. (2021). Indoor growth performance of Chlorella sp. production at tubular photobioreactor. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(2), 90-95.
- Farooq, W., Moon, M., Ryu, B. G., Suh, W. I., Shrivastav, A., Park, M. S., Mishra, S. K., & Yang, J. W. (2015). Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Research, 8, 1-7. https://doi.org/10.1016/j.algal.2014.12.007
- Gumbi, S. F. T., Kumar, A., & Olaniran, A. O. (2022). Lipid productivity and biosynthesis Gene response of indigenous microalgae Chlorella sp. T4 strain for biodiesel production under different nitrogen and phosphorus load. BioEnergy Research, 15(4), 2090-2101. https://doi.org/10.1007/s12155-022-10419-z
- Idenyi, J. N., Eya, J. C., Ogbonna, J. C., Chia, M. A., Alam, M. A., & Ubi, B. E. (2021). Characterization of strains of Chlorella from Abakaliki, Nigeria, for the production of high-value products under variable temperatures. Journal of Applied Phycology, 33, 275-285. https://doi.org/10.1007/s10811-020-02313-y
- Konar, N., Durmaz, Y., Genc Polat, D., & Mert, B. (2022). Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. Journal of Food Processing and Preservation, 46(5), e16594. https://doi.org/10.1111/jfpp.16594
- Krzeminska, I., Piasecka, A., Nosalewicz, A., Simionato, D., & Wawrzykowski, J. (2015). Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresource Technology, 196, 72-77. https://doi.org/10.1016/j.biortech.2015.07.043
- Macías-Sánchez, M. D., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251. https://doi.org/10.1016/j.jfoodeng.2004.03.021
- Mastropetros, S. G., Koutra, E., Amouri, M., Aziza, M., Ali, S. S., & Kornaros, M. (2022). Comparative assessment of nitrogen concentration effect on microalgal growth and biochemical characteristics of two Chlorella strains cultivated in digestate. Marine Drugs, 20(7), 415. https://doi.org/10.3390/md20070415
- McClure, D. D., Nightingale, J. K., Luiz, A., Black, S., Zhu, J., & Kavanagh, J. M. (2019). Pilot-scale production of lutein using Chlorella vulgaris. Algal Research, 44, 101707. https://doi.org/10.1016/j.algal.2019.101707
- Mehariya, S., Goswami, R. K., Karthikeysan, O. P., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553
- Ördög, V., Stirk, W. A., Bálint, P., Aremu, A. O., Okem, A., Lovász, C., Molnár, Z., & van Staden, J. (2016). Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Research, 16, 141-149. https://doi.org/10.1016/j.algal.2016.03.001
- Park, J. Y., Choi, S. A., Jeong, M. J., Nam, B., Oh, Y. K., & Lee, J. S. (2014). Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid. Bioresource Technology, 162, 379-383. https://doi.org/10.1016/j.biortech.2014.03.159
- Ram, S., Paliwal, C., & Mishra, S. (2019). Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. Bioresource Technology Reports, 7, 100194. https://doi.org/10.1016/j.biteb.2019.100194
- Renaud, S. M., Parry, D. L., Thinh, L. V., Kuo, C., Padovan, A., & Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 3, 43-53. https://doi.org/10.1007/BF00003918
- Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
- Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Kabir Chowdhury, M. A., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30, 197-213. https://doi.org/10.1007/s10811-017-1234-z
- Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6(2), 116. https://doi.org/10.1007/s13205-016-0434-6
- Soto‐Ramirez, R., Tavernini, L., Zúñiga, H., Poirrier, P., & Chamy, R. (2021). Study of microalgal behaviour in continuous culture using photosynthetic rate curves: The case of chlorophyll and carotenoid production by Chlorella vulgaris. Aquaculture Research, 52(8), 3639-3648. https://doi.org/10.1111/are.15208
- Sugiharto, S. (2020). Nutraceutical aspects of microalgae Spirulina and Chlorella on broiler chickens. Livestock Research for Rural Development, 32(6), 84.
- Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047
- Vuuren, S. J. V., Taylor, J., Ginkel, C., & Gerber, A. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African freshwaters. North-West University and Department of Water Affairs and Forestry.
- Wong, Y., Ho, Y. H., Ho, K. C., Leung, H. M., & Yung, K. K. L. (2017). Growth medium screening for Chlorella vulgaris growth and lipid production. Journal of Aquaculture & Marine Biology, 6(1), 00143. https://doi.org/10.15406/jamb.2017.06.00143
- Yusof, Y. A. M., Basari, J. M. H., Mukti, N. A., Sabuddin, R., Muda, A. R., Sulaiman, S., Makpol, S., & Ngah, W. Z. W. (2011). Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. African Journal of Biotechnology, 10(62), 13536-13542. https://doi.org/10.5897/AJB11.1602
- Zhu, S., Wang, Y., Shang, C., Wang, Z., Xu, J., & Yuan, Z. (2015). Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation. Journal of bioscience and bioengineering, 120(2), 205-209. https://doi.org/10.1016/j.jbiosc.2014.12.018
- Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12(3), 349-354. https://doi.org/10.1023/A:1008151004317
Year 2024,
Volume: 13 Issue: 2, 168 - 174, 30.06.2024
Mahmut Elp
,
Yaşar Durmaz
,
Gökhun Çağatay Erbil
Project Number
KÜ-BAP01/2021-49
References
- Anto, S., Pugazhendhi, A., & Mathimani, T. (2019). Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock. Biocatalysis and Agricultural Biotechnology, 20, 101179. https://doi.org/10.1016/j.bcab.2019.101179
- Asadi, P., Rad, H. A., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa. 91 in post treatment of dairy wastewater treatment plant effluents. Environmental Science and Pollution Research, 26, 29473-29489. https://doi.org/10.1007/s11356-019-06051-8
- Bellinger, E. G., & Sigee, D. C. (2010). A key to the more frequently occurring freshwater algae. In Bellinger, E. G., & Sigee, D. C. (Eds.), Freshwater algae: Identification, enumeration and use as bioindicators (pp. 137-244). John Wiley & Sons. https://doi.org/10.1002/9781118917152.ch4
- Chia, M. A., Lombardi, A. T., & Melão, M. da G. G. (2013). Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais da Academia Brasileira de Ciencias, 85(4), 1427–1438. https://doi.org/10.1590/0001-3765201393312
- Chu, P. -N., Chu, F. -F., Zhang, Y., Wu, C., & Zeng, R. J. (2015). A robust direct-transesterification method for microalgae. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(23), 2583-2590. https://doi.org/10.1080/15567036.2012.733481
- Dahiya, S., Chowdhury, R., Tao, W., & Kumar, P. (2021). Biomass and lipid productivity by two algal strains of Chlorella sorokiniana grown in hydrolysate of water hyacinth. Energies, 14(5), 1411. https://doi.org/10.3390/en14051411
- Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. https://doi.org/10.1016/j.algal.2020.101811
- Erbil, G. Ç., Durmaz, Y., & Elp, M. (2021). Indoor growth performance of Chlorella sp. production at tubular photobioreactor. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(2), 90-95.
- Farooq, W., Moon, M., Ryu, B. G., Suh, W. I., Shrivastav, A., Park, M. S., Mishra, S. K., & Yang, J. W. (2015). Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Research, 8, 1-7. https://doi.org/10.1016/j.algal.2014.12.007
- Gumbi, S. F. T., Kumar, A., & Olaniran, A. O. (2022). Lipid productivity and biosynthesis Gene response of indigenous microalgae Chlorella sp. T4 strain for biodiesel production under different nitrogen and phosphorus load. BioEnergy Research, 15(4), 2090-2101. https://doi.org/10.1007/s12155-022-10419-z
- Idenyi, J. N., Eya, J. C., Ogbonna, J. C., Chia, M. A., Alam, M. A., & Ubi, B. E. (2021). Characterization of strains of Chlorella from Abakaliki, Nigeria, for the production of high-value products under variable temperatures. Journal of Applied Phycology, 33, 275-285. https://doi.org/10.1007/s10811-020-02313-y
- Konar, N., Durmaz, Y., Genc Polat, D., & Mert, B. (2022). Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. Journal of Food Processing and Preservation, 46(5), e16594. https://doi.org/10.1111/jfpp.16594
- Krzeminska, I., Piasecka, A., Nosalewicz, A., Simionato, D., & Wawrzykowski, J. (2015). Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresource Technology, 196, 72-77. https://doi.org/10.1016/j.biortech.2015.07.043
- Macías-Sánchez, M. D., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251. https://doi.org/10.1016/j.jfoodeng.2004.03.021
- Mastropetros, S. G., Koutra, E., Amouri, M., Aziza, M., Ali, S. S., & Kornaros, M. (2022). Comparative assessment of nitrogen concentration effect on microalgal growth and biochemical characteristics of two Chlorella strains cultivated in digestate. Marine Drugs, 20(7), 415. https://doi.org/10.3390/md20070415
- McClure, D. D., Nightingale, J. K., Luiz, A., Black, S., Zhu, J., & Kavanagh, J. M. (2019). Pilot-scale production of lutein using Chlorella vulgaris. Algal Research, 44, 101707. https://doi.org/10.1016/j.algal.2019.101707
- Mehariya, S., Goswami, R. K., Karthikeysan, O. P., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553
- Ördög, V., Stirk, W. A., Bálint, P., Aremu, A. O., Okem, A., Lovász, C., Molnár, Z., & van Staden, J. (2016). Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Research, 16, 141-149. https://doi.org/10.1016/j.algal.2016.03.001
- Park, J. Y., Choi, S. A., Jeong, M. J., Nam, B., Oh, Y. K., & Lee, J. S. (2014). Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid. Bioresource Technology, 162, 379-383. https://doi.org/10.1016/j.biortech.2014.03.159
- Ram, S., Paliwal, C., & Mishra, S. (2019). Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. Bioresource Technology Reports, 7, 100194. https://doi.org/10.1016/j.biteb.2019.100194
- Renaud, S. M., Parry, D. L., Thinh, L. V., Kuo, C., Padovan, A., & Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 3, 43-53. https://doi.org/10.1007/BF00003918
- Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
- Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Kabir Chowdhury, M. A., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30, 197-213. https://doi.org/10.1007/s10811-017-1234-z
- Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6(2), 116. https://doi.org/10.1007/s13205-016-0434-6
- Soto‐Ramirez, R., Tavernini, L., Zúñiga, H., Poirrier, P., & Chamy, R. (2021). Study of microalgal behaviour in continuous culture using photosynthetic rate curves: The case of chlorophyll and carotenoid production by Chlorella vulgaris. Aquaculture Research, 52(8), 3639-3648. https://doi.org/10.1111/are.15208
- Sugiharto, S. (2020). Nutraceutical aspects of microalgae Spirulina and Chlorella on broiler chickens. Livestock Research for Rural Development, 32(6), 84.
- Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047
- Vuuren, S. J. V., Taylor, J., Ginkel, C., & Gerber, A. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African freshwaters. North-West University and Department of Water Affairs and Forestry.
- Wong, Y., Ho, Y. H., Ho, K. C., Leung, H. M., & Yung, K. K. L. (2017). Growth medium screening for Chlorella vulgaris growth and lipid production. Journal of Aquaculture & Marine Biology, 6(1), 00143. https://doi.org/10.15406/jamb.2017.06.00143
- Yusof, Y. A. M., Basari, J. M. H., Mukti, N. A., Sabuddin, R., Muda, A. R., Sulaiman, S., Makpol, S., & Ngah, W. Z. W. (2011). Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. African Journal of Biotechnology, 10(62), 13536-13542. https://doi.org/10.5897/AJB11.1602
- Zhu, S., Wang, Y., Shang, C., Wang, Z., Xu, J., & Yuan, Z. (2015). Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation. Journal of bioscience and bioengineering, 120(2), 205-209. https://doi.org/10.1016/j.jbiosc.2014.12.018
- Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12(3), 349-354. https://doi.org/10.1023/A:1008151004317