Review
BibTex RIS Cite

Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme

Year 2021, , 47 - 66, 31.12.2021
https://doi.org/10.52795/mateca.1020081

Abstract

Tornalama operasyonunda uygulanan soğutma/yağlama yöntemleri işleme performansını önemli ölçüde etkilemektedir. Soğutma/yağlama yönteminde kullanılan kesme sıvısı miktarının kontrolü ise, hem toplam üretim maliyeti açısından hem de çevreye olan etkileri açısından önem arz etmektedir. Bu amaçla uygulanan Minimum Miktarda Yağlama (MMY) tekniği, kullanılan kesme sıvısı miktarını ciddi oranda azaltırken işleme performansını da koruduğu bilinmektedir. MMY yönteminde kullanılan kesme sıvılarının soğutma/yağlama etkisini artırmak amacıyla son yıllarda bu kesme sıvılarına nanoparçacık takviye edilmektedir. Bu şekilde elde edilen nanoakışkanların kesme performansını ne ölçüde iyileştirdiği araştırmacıların üzerinde yoğunlaştığı bir konudur.
Bu çalışmada tornalama işlemine uygulanan MMY soğutma/yağlama yönteminde nanoparçacık takviyeli kesme sıvısı (nanoakışkan) kullanımının işleme performansına etkisi ile ilgili çalışmalar incelenmiştir. Yapılan incelemede iş parçası malzemesi olarak çelik alaşımları, titanyum alaşımları ve nikel alaşımları olmak üzere, işlenmesinde zorluk yaşanan bu malzemelerle ilgili yapılan çalışmalar ayrı başlıklarda değerlendirilmiştir. Bu çalışmalarda kuru işleme, ıslak işleme (geleneksel soğutma), sade MMY ve nanoparçacık katkılı MMY olmak üzere farklı soğutma şartlarında işleme performansları incelendiği görülmüştür. Ayrıca, nanoparçacık ilavesi ile ilgili farklı çeşit malzemeler, ağırlıkça yada hacimce farklı oranlar veya farklı boyutlar olmak üzere birden çok parametrenin irdelendiği gözlenmiştir. Yapılan tüm bu çalışmalardan elde edilen sonuçlarda, MMY yönteminde nanoakışkan uygulamasının sade MMY ve kuru işlemeye göre işleme performansında belirgin bir iyileşme sağlandığı ortaya konmuştur.

Supporting Institution

Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri

Project Number

2020-77654622-01 ve 2020-77654622-02

Thanks

Bu çalışma Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 2020-77654622-01 ve Proje no:2020-77654622-02).

References

  • Akkurt, M., (1998). Talaş Kaldırma Yöntemleri ve Takım Tezgahları, Birsen Yayınevi, Ankara, Türkiye, 23-90, 117-181.
  • Tosun N, Kuru C, Altıntaş E ve Erdin EO (2010) Hava Ve Geleneksel Soğutma Yöntemi İle Frezelemede Yüzey Pürüzlülüğünün İncelenmesi, Gazi Üniv. Müh. Mim. Fak. Der. Cilt 25, No 1, 141-146.
  • Dhar, N.R., Ahmed, N.T., Islam, S., (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel, International Journal of Machine Tools & Manufacture, 47, 748-753.
  • Çakır, A., (2015), AA 7075 ve AA 2024 alüminyum malzemelerin delinmesinde soğutma koşullarının kesme performansına etkisinin araştırılması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Autret R., Liang S. Y., (2003), Minimum quantity lubrication in finish hardturning, http://hardingeus.com/usr/pdf/hardturn/LIANG3.PDF, alındığı tarih: 17.12.2008.
  • Yücel, E., Günay, M., Ayyıldız, M., Erkan, Ö., ve Kara, F. (t.y.). Talaşlı İmalatta Kullanılan Kesme Sıvılarının İnsan Sağlığına Etkileri Ve Sürdürülebilir Kullanımı, ss. 116–121.
  • Dhar, N.R., Kamruzzaman, M., Ahmed, M., (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel, Journal of Materials Processing Technology, Vol.172, No.299–304.
  • Holmes, K., (2008). Minimum Quantity Lubrication (MQL) is a Key Technology to Lower Manufacturing Costs for Automotive, Aerospace, Defense and Other Industries, Manufacturing Business and Technology Forum, Dearborn, MI.
  • Gupta MK, Mia M, Pruncu CI, KapłonekW, Nadolny K, Patra K, Mikolajczyk T, Pimenov DY, Sarikaya M, Sharma VS (2019) Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int J AdvManuf Technol 102: 3995–4009. https://doi.org/10.1007/s00170-019-03453-3.
  • Sato BK, de Sales AR, Lopes JC, LE de A S, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Influence of water in the MQL technique in the grinding of steel AISI 4340 using CBN wheels. REM - Int Eng J 71:391–396.
  • Rodriguez RL, Lopes JC,Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution forminimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103: 487–497. https://doi.org/10.1007/s00170-019-03529-0.
  • Pervaiz, S., Kannan, S., ve Kishawy, H. A. (2018). An extensive review of the water consumption and cutting fl uid based sustainability concerns in the metal cutting sector. Journal of Cleaner Production, 197, ss. 134–153. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.jclepro.2018.06.190 adresinden erişildi.
  • Yıldırım, Ç. V., Sarıkaya, M., Kıvak, T., ve Şirin, Ş. (2019). The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribology International, 134(February), ss. 443–456. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2019.02.027 adresinden erişildi.
  • Venkatesan, K., Mathew, A. T., Devendiran, S., Ghazaly, N. M., Sanjith, S., ve Raghul, R. (2019). Machinability study and multi-response optimization of cutting force, Surface roughness and tool wear on CNC turned Inconel 617 superalloy using Al2O3 Nanofluids in Coconut oil. Procedia Manufacturing, 30, ss. 396–403. Elsevier B.V.
  • Singh, R. K., Sharma, A. K., Bishwajeet, Mandal, V., Gaurav, K., Nag, A., Kumar, A., vd. (2018). Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Materials Today: Proceedings, 5(11), ss. 24578–24586. Elsevier Ltd.
  • Sharma, A. K., Tiwari, A. K., Singh, R. K., ve Dixit, A. R. (2016). Tribological Investigation of TiO2 Nanoparticle based Cutting Fluid in Machining under Minimum Quantity Lubrication (MQL). Materials Today: Proceedings, 3(6), ss. 2155–2162. Elsevier Ltd. tarihinde http://dx.doi.org/10.1016/j.matpr.2016.04.121 adresinden erişildi.
  • Park, Kyung Hee, Gi Dong Yang, ve Dong Yoon Lee. (2015). Tool wear analysis on coated and uncoated carbide tools in ınconel machining. International Journal of Precision Engineering and Manufacturing, 16 (7): 1639–45.
  • Çakır A., Yağmur S., Şeker U., (2013). Farklı Sartlarda Uygulanan Minimum Miktarda Sogutma Yönteminin AA2024 Alüminyum Alasımının Tornalanması Sürecine Olan Etkisinin Deneysel Olarak Incelenmesi. 7th International Advanced Technologies Symposium (IATS’13), 1, 320 (Tam Metin Bildiri/Sözlü Sunum)(Yayın No:4461607).
  • Stephenson, D.A., Agapiou, J.S. (2016). Metal Cutting Theory and Practice, (3rd ed.), pp. 783-825, Taylor & Francis, New York.
  • Suzuki, S. (2002). Developments in Oil Supplying Systems for MQL Cutting. Journal of Japanese Society of Tribologists, 47, 538-543.
  • Url-1 http://www.skf.com, internet kaynağından alındığı tarih: 02.01.2012.
  • Klocke, F., Gerschwiler, K., (2003). Minimalmengenschmierung – Systeme, Medien, Einsatzbeispiele und ökonomische Aspekte der Trockenbearbeitung, Trockenbearbeitung von Metallen, Proc. of the VDI-Seminar, Stuttgart, Mar. 18: 2.1-2.20.
  • ASTM, ASTM Standart E1687-95: Determining Carcinogenic Potential of Virgin Base Oils in Metalworking Fluids, American SOciety for Testing and Materials, Philadelphia, PA, (1997).
  • Akben,U., (2009). Minimum Miktarda Yağlama (MMY) ile Kesmenin Takım Aşınması ve Yüzey Pürüzlüğüne Etkilerinin İncelenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enst., İstanbul.
  • Xuan, Y., Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow, 21(1), 58-64.
  • Babar H., Ali H.M. (2019). Airfoil shaped pin-fin heat sink: Potential evaluation of ferric oxide and titania nanofluids. Journal of Energy Conversion and Management, 212, 112194
  • Lee, P., Nam, J. S., Li, C., Lee, S. W. (2011). An Experimental Study on Micro- Grinding Process with Nanofluid Minimum Quantity Lubrication (MQL). Internatıonal Journal Of Precısıon Engıneerıng And Manufacturıng Vol. 13, No. 3, pp. 331-338
  • Khatai S, Kumar R, Sahoo AK, Panda A and Das D (2020) Metal-Oxide Based Nanofluid Application in Turning and Grinding Processes: A Comprehensivere View. Materialstoday: Proceedings, (2020), 26: 1707-1713.
  • Xuan, Y., ve Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), ss. 151–155.
  • Murshed, S. M. S., Leong, K. C., ve Yang, C. (2005). Enhanced thermal conductivity of TiO2 - Water based nanofluids. International Journal of Thermal Sciences, 44(4), ss. 367–373.
  • Sodavadia, K. P., ve Makwana, A. H. (2014). Experimental Investigation on the Performance of Coconut oil Based Nano Fluid as Lubricants during Turning of AISI 304 Austenitic Stainless Steel. International Journal of Advanced Mechanical Engineering, 4(1), ss. 55–60.
  • Kumar Sharma, A., Kumar Tiwari, A., Rai Dixit, A., ve Kumar Singh, R. (2020). Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid. Measurement: Journal of the International Measurement Confederation, 150. Elsevier Ltd.
  • Singh, R. K., Sharma, A. K., Dixit, A. R., Tiwari, A. K., Pramanik, A., ve Mandal, A. (2017). Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. Journal of Cleaner Production, 162, ss. 830–845. Elsevier Ltd. tarihinde http://dx.doi.org/10.1016/j.jclepro.2017.06.104 adresinden erişildi.
  • Krishna Kanth, V., Sreeramulu, D., Srikiran, S., Pradeep Kumar, M., Jagdeesh, K. E., ve Govindh, B. (2019). Experimental investigation of cutting parameters using nano lubrication on turning AISI 1040 steel. Materials Today: Proceedings, (xxxx). Elsevier Ltd.
  • Prasad, M.M.S. (2013). Performance Evaluation of Nano Graphite Inclusions in Cutting Fluids With Mql Technique in Turning of Aisi 1040 Steel. International Journal of Research in Engineering and Technology, 02(11), ss. 381–393.
  • Pasam, V. K., Srikant Revuru, R., ve Gugulothu, S. (2018). Comparing the performance & viability of nano and microfluids in minimum quantity lubrication for machining AISI1040 steel. Materials Today: Proceedings, 5(2), ss. 8016–8024. Elsevier Ltd.
  • Revuru, R. S., Pasam, V. K., Syed, I., ve Paliwal, U. K. (2018). Development of finite element based model for performance evaluation of nano cutting fluids in minimum quantity lubrication. CIRP Journal of Manufacturing Science and Technology, 21, ss. 75–85. CIRP. tarihinde https://doi.org/10.1016/j.cirpj.2018.02.005 adresinden erişildi.
  • Sharma, A. K., Tiwari, A. K., Dixit, A. R., ve Singh, R. K. (2017). Investigation into Performance of SiO2 Nanoparticle Based Cutting Fluid in Machining Process. Materials Today: Proceedings, 4(2), ss. 133–141. Elsevier Ltd.
  • Padmini, R., Vamsi Krishna, P., ve Krishna Mohana Rao, G. (2016). Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, 94, ss. 490–501.
  • Talib, N., ve Rahim, E. A. (2018). Tribology International Performance of modi fi ed jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribology International, 118(August 2017), ss. 89–104. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2017.09.016 adresinden erişildi.
  • Su, Y., Gong, L., Li, B., Liu, Z., ve Chen, D. (2016). Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. International Journal of Advanced Manufacturing Technology, 83(9–12), ss. 2083–2089.
  • Usha, M., ve Srinivasa Rao, G. (2020). Optimisation of Parameters in Turning Using Herbal Based Nano Cutting Fluid with MQL. Materials Today: Proceedings, 22, ss. 1535–1544. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2020.02.115 adresinden erişildi.
  • Kumar S. M., ve Krishna, V. M. (2020). An Investigation on Turning AISI 1018 Steel with Hybrid Biodegradeable Nanofluid / MQL Incorporated with Combinations of. Materials Today: Proceedings, 24, ss. 1577–1584. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2020.04.478 adresinden erişildi.
  • Khalil, A. N. M., Ali, M. A. M., ve Azmi, A. I. (2015). Effect of Al2O3 Nanolubricant with SDBS on Tool Wear During Turning Process of AISI 1050 with Minimal Quantity Lubricant. Procedia Manufacturing, 2(February), ss. 130–134. Elsevier B.V.
  • Patole, P. B., ve Kulkarni, V. V. (2018). Optimization of Process Parameters based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 using Nano Fluid. Materials Today: Proceedings, 5(1), ss. 104–112. Elsevier Ltd.
  • Sharma, P., Sidhu, B. S., ve Sharma, J. (2015). Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. Journal of Cleaner Production, 108, ss. 72–79. Elsevier Ltd.
  • Makhesana, M. A., ve Patel, K. M. (2019). Performance assessment of CaF2 solid lubricant assisted minimum quantity lubrication in turning. Procedia Manufacturing, 33, ss. 43–50. Elsevier B.V.
  • Özcan A E, Ay M ve Etyemez A (2019) Nano-Akışkan Aşındırıcı Toz Miktarının Yüzey Kalitesine Etkilerinin İncelenmesi, International Periodical of Recent Technologies in Applied Engineering. (22 Ocak 2019), 1:1-8.
  • Hegab, H., Umer, U., Deiab, I., ve Kishawy, H. (2018). Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. International Journal of Advanced Manufacturing Technology, 95(9–12), ss. 4229–4241. The International Journal of Advanced Manufacturing Technology.
  • Singh, R., Dureja, J. S., Dogra, M., Gupta, M. K., Mia, M., ve Song, Q. (2020). Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribology International, 145(September 2019), s. 106183. Elsevier Ltd.
  • Sartori, S., Ghiotti, A., ve Bruschi, S. (2018). Solid Lubricant-assisted Minimum Quantity Lubrication and Cooling strategies to improve Ti6Al4V machinability in finishing turning. Tribology International, 118(October 2017), ss. 287–294. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2017.10.010 adresinden erişildi.
  • Kumar Mishra, S., Ghosh, S., ve Aravindan, S. (2020). Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. Journal of Manufacturing Processes, 53(January 2019), ss. 174–189. Elsevier. tarihinde https://doi.org/10.1016/j.jmapro.2020.02.014 adresinden erişildi.
  • Chaudhari, S. S., Chakule, R. R., ve Talmale, P. S. (2019). Experimental study of heat transfer characteristics of Al2O3 and CuO nanofluids for machining application. Materials Today: Proceedings, 18, ss. 788–797. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2019.06.499 adresinden erişildi.
  • Yi, S., Li, J., Zhu, J., Wang, X., Mo, J., ve Ding, S. (2020). Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration. Journal of Manufacturing Processes, 49(November 2019), ss. 35–49. Elsevier. tarihinde https://doi.org/10.1016/j.jmapro.2019.09.038 adresinden erişildi.
  • Kishore Joshi, K., Behera, R. K., ve Anurag. (2018). Effect of minimum quantity lubrication with Al2O3 Nanofluid on Surface Roughness and its prediction using hybrid fuzzy controller in turning operation of Inconel 600. Materials Today: Proceedings, 5(9), ss. 20660–20668. Elsevier Ltd.
  • Anburaj, R. (2016). A Study of Minimum Quantity Lubrication with Nano Cutting Fluid on Surface Roughness and Chip Thickness in Turning Inconel 718. International Journal on Recent Researches In Science, Engineering & Technology, 5(1), ss. 0–5.
  • Paturi, U. M. R., Maddu, Y. R., Maruri, R. R., ve Narala, S. K. R. (2016). Measurement and Analysis of Surface Roughness in WS2 Solid Lubricant Assisted Minimum Quantity Lubrication (MQL) Turning of Inconel 718. Procedia CIRP, 40, ss. 138–143. Elsevier B.V.
  • Gutnichenko, O., Bushlya, V., Bihagen, S., ve Ståhl, J. E. (2018). Influence of GnP additive to vegetable oil on machining performance when MQL-assisted turning Alloy 718. Procedia Manufacturing, 25, ss. 330–337. Elsevier B.V. tarihinde https://doi.org/10.1016/j.promfg.2018.06.091 adresinden erişildi.

The Effect of Nanofluids Used in the MQL Technique Applied in Turning Process on Machining Performance: A Review on Eco-Friendly Machining

Year 2021, , 47 - 66, 31.12.2021
https://doi.org/10.52795/mateca.1020081

Abstract

The cooling/lubrication methods applied in the turning operation significantly affect the machining performance. The control of the amount of cutting fluid used in the cooling/lubrication method is important both in terms of the total production cost and in terms of its effects on the environment. It is known that the Minimum Amount of Lubrication (MMY) technique applied for this purpose significantly reduces the amount of cutting fluid used while maintaining the machining performance. In recent years, nanoparticles have been added to these cutting fluids in order to increase the cooling/lubricating effect of the cutting fluids used in the MMY method. The extent to which the nanofluids obtained in this way improve the cutting performance is a subject that researchers focus on.
In this study, studies on the effect of the use of nanoparticle reinforced cutting fluid (nanofluid) on the machining performance in the MMY cooling/lubrication method applied to the turning process were examined. In the study, studies on these materials, which are difficult to process, such as steel alloys, titanium alloys and nickel alloys as workpiece materials, were evaluated under separate headings. In these studies, machining performances were investigated under different cooling conditions, including dry machining, wet machining (conventional cooling), pure MMY and nanoparticle added MMY. In addition, it has been observed that more than one parameter, including different kinds of materials, different ratios by weight or volume, or different sizes, related to the addition of nanoparticles. In the results obtained from all these studies, it has been revealed that nanofluid application in the MMY method provides a significant improvement in machining performance compared to pure MMY and dry machining.

Project Number

2020-77654622-01 ve 2020-77654622-02

References

  • Akkurt, M., (1998). Talaş Kaldırma Yöntemleri ve Takım Tezgahları, Birsen Yayınevi, Ankara, Türkiye, 23-90, 117-181.
  • Tosun N, Kuru C, Altıntaş E ve Erdin EO (2010) Hava Ve Geleneksel Soğutma Yöntemi İle Frezelemede Yüzey Pürüzlülüğünün İncelenmesi, Gazi Üniv. Müh. Mim. Fak. Der. Cilt 25, No 1, 141-146.
  • Dhar, N.R., Ahmed, N.T., Islam, S., (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel, International Journal of Machine Tools & Manufacture, 47, 748-753.
  • Çakır, A., (2015), AA 7075 ve AA 2024 alüminyum malzemelerin delinmesinde soğutma koşullarının kesme performansına etkisinin araştırılması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Autret R., Liang S. Y., (2003), Minimum quantity lubrication in finish hardturning, http://hardingeus.com/usr/pdf/hardturn/LIANG3.PDF, alındığı tarih: 17.12.2008.
  • Yücel, E., Günay, M., Ayyıldız, M., Erkan, Ö., ve Kara, F. (t.y.). Talaşlı İmalatta Kullanılan Kesme Sıvılarının İnsan Sağlığına Etkileri Ve Sürdürülebilir Kullanımı, ss. 116–121.
  • Dhar, N.R., Kamruzzaman, M., Ahmed, M., (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel, Journal of Materials Processing Technology, Vol.172, No.299–304.
  • Holmes, K., (2008). Minimum Quantity Lubrication (MQL) is a Key Technology to Lower Manufacturing Costs for Automotive, Aerospace, Defense and Other Industries, Manufacturing Business and Technology Forum, Dearborn, MI.
  • Gupta MK, Mia M, Pruncu CI, KapłonekW, Nadolny K, Patra K, Mikolajczyk T, Pimenov DY, Sarikaya M, Sharma VS (2019) Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int J AdvManuf Technol 102: 3995–4009. https://doi.org/10.1007/s00170-019-03453-3.
  • Sato BK, de Sales AR, Lopes JC, LE de A S, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Influence of water in the MQL technique in the grinding of steel AISI 4340 using CBN wheels. REM - Int Eng J 71:391–396.
  • Rodriguez RL, Lopes JC,Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution forminimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103: 487–497. https://doi.org/10.1007/s00170-019-03529-0.
  • Pervaiz, S., Kannan, S., ve Kishawy, H. A. (2018). An extensive review of the water consumption and cutting fl uid based sustainability concerns in the metal cutting sector. Journal of Cleaner Production, 197, ss. 134–153. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.jclepro.2018.06.190 adresinden erişildi.
  • Yıldırım, Ç. V., Sarıkaya, M., Kıvak, T., ve Şirin, Ş. (2019). The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribology International, 134(February), ss. 443–456. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2019.02.027 adresinden erişildi.
  • Venkatesan, K., Mathew, A. T., Devendiran, S., Ghazaly, N. M., Sanjith, S., ve Raghul, R. (2019). Machinability study and multi-response optimization of cutting force, Surface roughness and tool wear on CNC turned Inconel 617 superalloy using Al2O3 Nanofluids in Coconut oil. Procedia Manufacturing, 30, ss. 396–403. Elsevier B.V.
  • Singh, R. K., Sharma, A. K., Bishwajeet, Mandal, V., Gaurav, K., Nag, A., Kumar, A., vd. (2018). Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Materials Today: Proceedings, 5(11), ss. 24578–24586. Elsevier Ltd.
  • Sharma, A. K., Tiwari, A. K., Singh, R. K., ve Dixit, A. R. (2016). Tribological Investigation of TiO2 Nanoparticle based Cutting Fluid in Machining under Minimum Quantity Lubrication (MQL). Materials Today: Proceedings, 3(6), ss. 2155–2162. Elsevier Ltd. tarihinde http://dx.doi.org/10.1016/j.matpr.2016.04.121 adresinden erişildi.
  • Park, Kyung Hee, Gi Dong Yang, ve Dong Yoon Lee. (2015). Tool wear analysis on coated and uncoated carbide tools in ınconel machining. International Journal of Precision Engineering and Manufacturing, 16 (7): 1639–45.
  • Çakır A., Yağmur S., Şeker U., (2013). Farklı Sartlarda Uygulanan Minimum Miktarda Sogutma Yönteminin AA2024 Alüminyum Alasımının Tornalanması Sürecine Olan Etkisinin Deneysel Olarak Incelenmesi. 7th International Advanced Technologies Symposium (IATS’13), 1, 320 (Tam Metin Bildiri/Sözlü Sunum)(Yayın No:4461607).
  • Stephenson, D.A., Agapiou, J.S. (2016). Metal Cutting Theory and Practice, (3rd ed.), pp. 783-825, Taylor & Francis, New York.
  • Suzuki, S. (2002). Developments in Oil Supplying Systems for MQL Cutting. Journal of Japanese Society of Tribologists, 47, 538-543.
  • Url-1 http://www.skf.com, internet kaynağından alındığı tarih: 02.01.2012.
  • Klocke, F., Gerschwiler, K., (2003). Minimalmengenschmierung – Systeme, Medien, Einsatzbeispiele und ökonomische Aspekte der Trockenbearbeitung, Trockenbearbeitung von Metallen, Proc. of the VDI-Seminar, Stuttgart, Mar. 18: 2.1-2.20.
  • ASTM, ASTM Standart E1687-95: Determining Carcinogenic Potential of Virgin Base Oils in Metalworking Fluids, American SOciety for Testing and Materials, Philadelphia, PA, (1997).
  • Akben,U., (2009). Minimum Miktarda Yağlama (MMY) ile Kesmenin Takım Aşınması ve Yüzey Pürüzlüğüne Etkilerinin İncelenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enst., İstanbul.
  • Xuan, Y., Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow, 21(1), 58-64.
  • Babar H., Ali H.M. (2019). Airfoil shaped pin-fin heat sink: Potential evaluation of ferric oxide and titania nanofluids. Journal of Energy Conversion and Management, 212, 112194
  • Lee, P., Nam, J. S., Li, C., Lee, S. W. (2011). An Experimental Study on Micro- Grinding Process with Nanofluid Minimum Quantity Lubrication (MQL). Internatıonal Journal Of Precısıon Engıneerıng And Manufacturıng Vol. 13, No. 3, pp. 331-338
  • Khatai S, Kumar R, Sahoo AK, Panda A and Das D (2020) Metal-Oxide Based Nanofluid Application in Turning and Grinding Processes: A Comprehensivere View. Materialstoday: Proceedings, (2020), 26: 1707-1713.
  • Xuan, Y., ve Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), ss. 151–155.
  • Murshed, S. M. S., Leong, K. C., ve Yang, C. (2005). Enhanced thermal conductivity of TiO2 - Water based nanofluids. International Journal of Thermal Sciences, 44(4), ss. 367–373.
  • Sodavadia, K. P., ve Makwana, A. H. (2014). Experimental Investigation on the Performance of Coconut oil Based Nano Fluid as Lubricants during Turning of AISI 304 Austenitic Stainless Steel. International Journal of Advanced Mechanical Engineering, 4(1), ss. 55–60.
  • Kumar Sharma, A., Kumar Tiwari, A., Rai Dixit, A., ve Kumar Singh, R. (2020). Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid. Measurement: Journal of the International Measurement Confederation, 150. Elsevier Ltd.
  • Singh, R. K., Sharma, A. K., Dixit, A. R., Tiwari, A. K., Pramanik, A., ve Mandal, A. (2017). Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. Journal of Cleaner Production, 162, ss. 830–845. Elsevier Ltd. tarihinde http://dx.doi.org/10.1016/j.jclepro.2017.06.104 adresinden erişildi.
  • Krishna Kanth, V., Sreeramulu, D., Srikiran, S., Pradeep Kumar, M., Jagdeesh, K. E., ve Govindh, B. (2019). Experimental investigation of cutting parameters using nano lubrication on turning AISI 1040 steel. Materials Today: Proceedings, (xxxx). Elsevier Ltd.
  • Prasad, M.M.S. (2013). Performance Evaluation of Nano Graphite Inclusions in Cutting Fluids With Mql Technique in Turning of Aisi 1040 Steel. International Journal of Research in Engineering and Technology, 02(11), ss. 381–393.
  • Pasam, V. K., Srikant Revuru, R., ve Gugulothu, S. (2018). Comparing the performance & viability of nano and microfluids in minimum quantity lubrication for machining AISI1040 steel. Materials Today: Proceedings, 5(2), ss. 8016–8024. Elsevier Ltd.
  • Revuru, R. S., Pasam, V. K., Syed, I., ve Paliwal, U. K. (2018). Development of finite element based model for performance evaluation of nano cutting fluids in minimum quantity lubrication. CIRP Journal of Manufacturing Science and Technology, 21, ss. 75–85. CIRP. tarihinde https://doi.org/10.1016/j.cirpj.2018.02.005 adresinden erişildi.
  • Sharma, A. K., Tiwari, A. K., Dixit, A. R., ve Singh, R. K. (2017). Investigation into Performance of SiO2 Nanoparticle Based Cutting Fluid in Machining Process. Materials Today: Proceedings, 4(2), ss. 133–141. Elsevier Ltd.
  • Padmini, R., Vamsi Krishna, P., ve Krishna Mohana Rao, G. (2016). Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, 94, ss. 490–501.
  • Talib, N., ve Rahim, E. A. (2018). Tribology International Performance of modi fi ed jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribology International, 118(August 2017), ss. 89–104. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2017.09.016 adresinden erişildi.
  • Su, Y., Gong, L., Li, B., Liu, Z., ve Chen, D. (2016). Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. International Journal of Advanced Manufacturing Technology, 83(9–12), ss. 2083–2089.
  • Usha, M., ve Srinivasa Rao, G. (2020). Optimisation of Parameters in Turning Using Herbal Based Nano Cutting Fluid with MQL. Materials Today: Proceedings, 22, ss. 1535–1544. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2020.02.115 adresinden erişildi.
  • Kumar S. M., ve Krishna, V. M. (2020). An Investigation on Turning AISI 1018 Steel with Hybrid Biodegradeable Nanofluid / MQL Incorporated with Combinations of. Materials Today: Proceedings, 24, ss. 1577–1584. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2020.04.478 adresinden erişildi.
  • Khalil, A. N. M., Ali, M. A. M., ve Azmi, A. I. (2015). Effect of Al2O3 Nanolubricant with SDBS on Tool Wear During Turning Process of AISI 1050 with Minimal Quantity Lubricant. Procedia Manufacturing, 2(February), ss. 130–134. Elsevier B.V.
  • Patole, P. B., ve Kulkarni, V. V. (2018). Optimization of Process Parameters based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 using Nano Fluid. Materials Today: Proceedings, 5(1), ss. 104–112. Elsevier Ltd.
  • Sharma, P., Sidhu, B. S., ve Sharma, J. (2015). Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. Journal of Cleaner Production, 108, ss. 72–79. Elsevier Ltd.
  • Makhesana, M. A., ve Patel, K. M. (2019). Performance assessment of CaF2 solid lubricant assisted minimum quantity lubrication in turning. Procedia Manufacturing, 33, ss. 43–50. Elsevier B.V.
  • Özcan A E, Ay M ve Etyemez A (2019) Nano-Akışkan Aşındırıcı Toz Miktarının Yüzey Kalitesine Etkilerinin İncelenmesi, International Periodical of Recent Technologies in Applied Engineering. (22 Ocak 2019), 1:1-8.
  • Hegab, H., Umer, U., Deiab, I., ve Kishawy, H. (2018). Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. International Journal of Advanced Manufacturing Technology, 95(9–12), ss. 4229–4241. The International Journal of Advanced Manufacturing Technology.
  • Singh, R., Dureja, J. S., Dogra, M., Gupta, M. K., Mia, M., ve Song, Q. (2020). Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribology International, 145(September 2019), s. 106183. Elsevier Ltd.
  • Sartori, S., Ghiotti, A., ve Bruschi, S. (2018). Solid Lubricant-assisted Minimum Quantity Lubrication and Cooling strategies to improve Ti6Al4V machinability in finishing turning. Tribology International, 118(October 2017), ss. 287–294. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.triboint.2017.10.010 adresinden erişildi.
  • Kumar Mishra, S., Ghosh, S., ve Aravindan, S. (2020). Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. Journal of Manufacturing Processes, 53(January 2019), ss. 174–189. Elsevier. tarihinde https://doi.org/10.1016/j.jmapro.2020.02.014 adresinden erişildi.
  • Chaudhari, S. S., Chakule, R. R., ve Talmale, P. S. (2019). Experimental study of heat transfer characteristics of Al2O3 and CuO nanofluids for machining application. Materials Today: Proceedings, 18, ss. 788–797. Elsevier Ltd. tarihinde https://doi.org/10.1016/j.matpr.2019.06.499 adresinden erişildi.
  • Yi, S., Li, J., Zhu, J., Wang, X., Mo, J., ve Ding, S. (2020). Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration. Journal of Manufacturing Processes, 49(November 2019), ss. 35–49. Elsevier. tarihinde https://doi.org/10.1016/j.jmapro.2019.09.038 adresinden erişildi.
  • Kishore Joshi, K., Behera, R. K., ve Anurag. (2018). Effect of minimum quantity lubrication with Al2O3 Nanofluid on Surface Roughness and its prediction using hybrid fuzzy controller in turning operation of Inconel 600. Materials Today: Proceedings, 5(9), ss. 20660–20668. Elsevier Ltd.
  • Anburaj, R. (2016). A Study of Minimum Quantity Lubrication with Nano Cutting Fluid on Surface Roughness and Chip Thickness in Turning Inconel 718. International Journal on Recent Researches In Science, Engineering & Technology, 5(1), ss. 0–5.
  • Paturi, U. M. R., Maddu, Y. R., Maruri, R. R., ve Narala, S. K. R. (2016). Measurement and Analysis of Surface Roughness in WS2 Solid Lubricant Assisted Minimum Quantity Lubrication (MQL) Turning of Inconel 718. Procedia CIRP, 40, ss. 138–143. Elsevier B.V.
  • Gutnichenko, O., Bushlya, V., Bihagen, S., ve Ståhl, J. E. (2018). Influence of GnP additive to vegetable oil on machining performance when MQL-assisted turning Alloy 718. Procedia Manufacturing, 25, ss. 330–337. Elsevier B.V. tarihinde https://doi.org/10.1016/j.promfg.2018.06.091 adresinden erişildi.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing and Industrial Engineering
Journal Section Review
Authors

Ayşegül Çakır Şencan 0000-0002-0506-6522

Muhammet Çelik This is me 0000-0003-2066-988X

Ekin Nisa Selayet Saraç This is me 0000-0001-5676-6302

Project Number 2020-77654622-01 ve 2020-77654622-02
Publication Date December 31, 2021
Submission Date November 8, 2021
Published in Issue Year 2021

Cite

APA Çakır Şencan, A., Çelik, M., & Selayet Saraç, E. N. (2021). Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme. Manufacturing Technologies and Applications, 2(3), 47-66. https://doi.org/10.52795/mateca.1020081
AMA Çakır Şencan A, Çelik M, Selayet Saraç EN. Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme. MATECA. December 2021;2(3):47-66. doi:10.52795/mateca.1020081
Chicago Çakır Şencan, Ayşegül, Muhammet Çelik, and Ekin Nisa Selayet Saraç. “Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme”. Manufacturing Technologies and Applications 2, no. 3 (December 2021): 47-66. https://doi.org/10.52795/mateca.1020081.
EndNote Çakır Şencan A, Çelik M, Selayet Saraç EN (December 1, 2021) Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme. Manufacturing Technologies and Applications 2 3 47–66.
IEEE A. Çakır Şencan, M. Çelik, and E. N. Selayet Saraç, “Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme”, MATECA, vol. 2, no. 3, pp. 47–66, 2021, doi: 10.52795/mateca.1020081.
ISNAD Çakır Şencan, Ayşegül et al. “Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme”. Manufacturing Technologies and Applications 2/3 (December 2021), 47-66. https://doi.org/10.52795/mateca.1020081.
JAMA Çakır Şencan A, Çelik M, Selayet Saraç EN. Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme. MATECA. 2021;2:47–66.
MLA Çakır Şencan, Ayşegül et al. “Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme”. Manufacturing Technologies and Applications, vol. 2, no. 3, 2021, pp. 47-66, doi:10.52795/mateca.1020081.
Vancouver Çakır Şencan A, Çelik M, Selayet Saraç EN. Tornalama İşleminde Uygulanan MMY Tekniğinde Kullanılan Nanoakışkanların İşleme Performansına Etkisi: Çevre Dostu İşleme Üzerine Bir İnceleme. MATECA. 2021;2(3):47-66.