Research Article
BibTex RIS Cite

Investigation of Coatability of Mechanically Alloyed AlCuCrFeNi High Entropy Alloy by Physical Vapor Deposition Technique

Year 2022, , 1 - 8, 30.08.2022
https://doi.org/10.52795/mateca.1124722

Abstract

High entropy alloys have been proposed as an alternative to superalloys due to having unique properties. As high entropy alloys continue to be researched, their importance is increasing with their unique and superior properties that can be used in wide areas. In this study, AlCuCrFeNi powders were synthesized by mechanical alloying technique. FCC (Face Centered Cubic), BCC (Body Centered Cubic) and B2 phases were detected in the synthesized powders. After the powders were pelleted, they were deposited on the Monel 400 substrate by the physical vapor deposition (PVD) technique. In this research, the microstructural properties of the produced coating were investigated. After production, an almost homogeneous thin film layer was produced.

References

  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6: 299–303, 2004.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19:349–362, 2016.
  • M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters. 2:107–123, 2014.
  • K. Harsha, Principles of Physical Vapor Deposition of Thin Films, Wiley, 2005.
  • A. Inspektor, P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review, :Surface and Coatings Technology, 257:138–153, 2014.
  • W.D. Sproul, Physical vapor deposition tool coatings, Surface and Coatings Technology. 81:1–7, 1996.
  • A.I. Ustinov, S.A. Demchenkov, T. v. Melnychenko, V.S. Skorodzievskii, S.S. Polishchuk, Effect of structure of high entropy CrFeCoNiCu alloys produced by EB PVD on their strength and dissipative properties, Journal of Alloys and Compounds. 887: 161408, 2021.
  • L. Liao, R. Gao, Z.H. Yang, S.T. Wu, Q. Wan, A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating, Surface and Coatings Technology. 437:128281, 2022.
  • V.M. Nadutov, A. v. Proshak, S.Y. Makarenko, V.Y. Panarin, M.Y. Svavil’Nyj, Creation and Mössbauer studies of high-entropy physical vapor deposition by cathode arc evaporation (PVD CAE) coating AlFeCoNiCuCr, Materwiss Werksttech, 47: 272–277, 2016.
  • P. Nagy, N. Rohbeck, G. Roussely, P. Sortais, J.L. Lábár, J. Gubicza, J. Michler, L. Pethö, Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film, Surface and Coatings Technology, 386, 125465, 2020.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19: 349–362, 2016.
  • A. Erdogan, S.E. Sunbul, K. Icin, K.M. Doleker, Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy, Vacuum, 187, 110143, 2021.
  • X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132: 233–238, 2012.
  • Y. Küçük, K.M. Döleker, M.S. Gök, S. Dal, Y. Altınay, A. Erdoğan, Microstructure, hardness and high temperature wear characteristics of boronized Monel 400, Surface and Coatings Technology, 436, 128277, 2022.
  • B. Gabbitas, P. Cao, S. Raynova, D.L. Zhang, Fabrication of TiAl Target by Mechanical Alloying and Applications in Physical Vapour Deposition Coating, Materials Science Forum, 534–536: 805–808, 2007.

Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi

Year 2022, , 1 - 8, 30.08.2022
https://doi.org/10.52795/mateca.1124722

Abstract

Yüksek entropili alaşımlar sahip oldukları üstün özellikleri sayesinde süper alaşımlara alternatif olarak önerilmektedir. Yüksek entropili alaşımlar araştırılmaya devam ettikçe ortaya çıkan özgün ve üstün özellikleri sayesinde geniş alanlarda kullanılabilir olmasıyla birlikte önemi gittikçe artmaktadır. Bu çalışmada mekanik alaşımlama tekniği ile AlCuCrFeNi tozları sentezlenmiştir. Sentezlenen tozlarda YMK (Yüzey Merkezli Kübik), HMK (Hacim Merkezli Kübik) ve B2 fazları tespit edilmiştir. Tozlar peletlendikten sonra fiziksel buhar biriktirme (FBB) tekniği ile Monel 400 altlık malzeme üzerine biriktirilmiştir. Üretilen kaplamanın mikroyapısal özellikleri incelenmiştir. Üretim sonrası homojene yakın bir ince film tabakası üretilmiştir.

References

  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6: 299–303, 2004.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19:349–362, 2016.
  • M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters. 2:107–123, 2014.
  • K. Harsha, Principles of Physical Vapor Deposition of Thin Films, Wiley, 2005.
  • A. Inspektor, P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review, :Surface and Coatings Technology, 257:138–153, 2014.
  • W.D. Sproul, Physical vapor deposition tool coatings, Surface and Coatings Technology. 81:1–7, 1996.
  • A.I. Ustinov, S.A. Demchenkov, T. v. Melnychenko, V.S. Skorodzievskii, S.S. Polishchuk, Effect of structure of high entropy CrFeCoNiCu alloys produced by EB PVD on their strength and dissipative properties, Journal of Alloys and Compounds. 887: 161408, 2021.
  • L. Liao, R. Gao, Z.H. Yang, S.T. Wu, Q. Wan, A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating, Surface and Coatings Technology. 437:128281, 2022.
  • V.M. Nadutov, A. v. Proshak, S.Y. Makarenko, V.Y. Panarin, M.Y. Svavil’Nyj, Creation and Mössbauer studies of high-entropy physical vapor deposition by cathode arc evaporation (PVD CAE) coating AlFeCoNiCuCr, Materwiss Werksttech, 47: 272–277, 2016.
  • P. Nagy, N. Rohbeck, G. Roussely, P. Sortais, J.L. Lábár, J. Gubicza, J. Michler, L. Pethö, Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film, Surface and Coatings Technology, 386, 125465, 2020.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19: 349–362, 2016.
  • A. Erdogan, S.E. Sunbul, K. Icin, K.M. Doleker, Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy, Vacuum, 187, 110143, 2021.
  • X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132: 233–238, 2012.
  • Y. Küçük, K.M. Döleker, M.S. Gök, S. Dal, Y. Altınay, A. Erdoğan, Microstructure, hardness and high temperature wear characteristics of boronized Monel 400, Surface and Coatings Technology, 436, 128277, 2022.
  • B. Gabbitas, P. Cao, S. Raynova, D.L. Zhang, Fabrication of TiAl Target by Mechanical Alloying and Applications in Physical Vapour Deposition Coating, Materials Science Forum, 534–536: 805–808, 2007.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Plating Technology
Journal Section Research Articles
Authors

Yunus Emre Şimşek 0000-0002-0059-5935

Kadir Mert Döleker This is me 0000-0003-4057-6832

Mehmet Kuru This is me 0000-0001-6030-0791

Sefa Emre Sünbül 0000-0002-2648-9268

Kürşat İcin 0000-0002-5160-6753

Publication Date August 30, 2022
Submission Date June 2, 2022
Published in Issue Year 2022

Cite

APA Şimşek, Y. E., Döleker, K. M., Kuru, M., Sünbül, S. E., et al. (2022). Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi. İmalat Teknolojileri Ve Uygulamaları, 3(2), 1-8. https://doi.org/10.52795/mateca.1124722
AMA Şimşek YE, Döleker KM, Kuru M, Sünbül SE, İcin K. Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi. MATECA. August 2022;3(2):1-8. doi:10.52795/mateca.1124722
Chicago Şimşek, Yunus Emre, Kadir Mert Döleker, Mehmet Kuru, Sefa Emre Sünbül, and Kürşat İcin. “Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi”. İmalat Teknolojileri Ve Uygulamaları 3, no. 2 (August 2022): 1-8. https://doi.org/10.52795/mateca.1124722.
EndNote Şimşek YE, Döleker KM, Kuru M, Sünbül SE, İcin K (August 1, 2022) Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları 3 2 1–8.
IEEE Y. E. Şimşek, K. M. Döleker, M. Kuru, S. E. Sünbül, and K. İcin, “Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi”, MATECA, vol. 3, no. 2, pp. 1–8, 2022, doi: 10.52795/mateca.1124722.
ISNAD Şimşek, Yunus Emre et al. “Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi”. İmalat Teknolojileri ve Uygulamaları 3/2 (August 2022), 1-8. https://doi.org/10.52795/mateca.1124722.
JAMA Şimşek YE, Döleker KM, Kuru M, Sünbül SE, İcin K. Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi. MATECA. 2022;3:1–8.
MLA Şimşek, Yunus Emre et al. “Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi”. İmalat Teknolojileri Ve Uygulamaları, vol. 3, no. 2, 2022, pp. 1-8, doi:10.52795/mateca.1124722.
Vancouver Şimşek YE, Döleker KM, Kuru M, Sünbül SE, İcin K. Mekanik Alaşımlanmış AlCuCrFeNi Yüksek Entropili Alaşımının Fiziksel Buhar Biriktirme Tekniği İle Kaplanabilirliğinin İncelenmesi. MATECA. 2022;3(2):1-8.