Research Article
BibTex RIS Cite

Pnömatik Tahrikli Çekme Yayı Yorulma Makinesi Tasarım ve İmalatı

Year 2022, , 44 - 54, 30.12.2022
https://doi.org/10.52795/mateca.1197167

Abstract

Bu çalışmada, bir çekme yayı yorulma makinesi tasarımı ve üretimi yapılmıştır. Çekme çeneleri pnömatik bir piston ile tahrik edilmektedir. Tasarlanan çalışma basıncı lokal pnömatik şebeke basıncı olan 6 bar’dır. En yüksek tahrik kuvveti 12 kN olarak tasarlanmıştır. Bu sayede, birçok yayı aynı anda test edilebilmektedir. Uygulanan kuvvet pnömatik hava basıncı ayarlayıcısı ile ayarlanabilmektedir. Yorulma döngüleri elektronik bir devre ile kontrol edilmektedir. Yorulma makinesi aynı zamanda belirlenen döngü sayısını tamamlaması için tasarlanmıştır. Bu nedenle, bir sayıcı kontrolcüye eklenmiştir. Makinenin her bir elementinin üretimi ve toleransları detaylı bir biçimde açıklanmıştır.

Project Number

-

References

  • 1. Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, and T. Bruckmann, Mission Profiling of Road Data Measurement for Coil Spring Fatigue Life, Measurement: Journal of the International Measurement Confederation, Elsevier Ltd, 107, 99–110, 2017.
  • 2. P. Zhang, D. Wang, Y. Guo, P. Cheng, C. Shao, N. Lang, X. Liu, and J. Huang, Fatigue Failure Analysis and Finite Element Assessment of the Twins Torsion Spring, Engineering Failure Analysis, Elsevier Ltd, 122(July 2020), 105187, 2021.
  • 3. Y.T. Tsai, P.C. Lin, Y.W. Chen, S.H. Wang, and J.R. Yang, Fatigue Behavior and Microstructural Characteristics of a Duplex Stainless Steel Weld Metal under Vibration-Assisted Welding, Materials Science and Engineering A, Elsevier B.V., 721(February), 319–327, 2018.
  • 4. R. Manouchehrynia, S. Abdullah, and S.S.K. Singh, Fatigue-Based Reliability in Assessing the Failure of an Automobile Coil Spring under Random Vibration Loadings, Engineering Failure Analysis, Elsevier Ltd, 131(September 2021), 105808, 2022.
  • 5. D.Q.Q. Wang, Q. Wang, Y.K. Zhu, P. Zhang, Z.J. Zhang, C.X. Ren, X.W. Li, and Z.F. Zhang, Evaluating the Fatigue Cracking Risk of Surface Strengthened 50CrMnMoVNb Spring Steel with Abnormal Life Time Distribution, Materials Science and Engineering A, 732(May), 192–204, 2018.
  • 6. U. Karr, Y. Sandaiji, R. Tanegashima, S. Murakami, B. Schönbauer, M. Fitzka, and H. Mayer, Inclusion Initiated Fracture in Spring Steel under Axial and Torsion Very High Cycle Fatigue Loading at Different Load Ratios, International Journal of Fatigue, Elsevier, 134(January), 105525, 2020.
  • 7. F. ÖZEN, U. DAM, M.K. ÇOBANOĞLU, E. İLHAN, and S. ASLANLAR, Design and Manufacturing of a Pneumatic Driven Compression Spring Fatigue Machine, European Mechanical Science, 5(4), 189–193, 2021.
  • 8. F. Özen, A. Ilhan, H.T. Sezan, E. Ilhan, and S. Aslanlar, Effect of the Galvanization Process on the Fatigue Life of High Strength Steel Compression Springs, Materialpruefung/Materials Testing, 63(3), 226–230, 2021.
  • 9. T. Nabagło, A. Jurkiewicz, and J. Kowal, Modeling Verification of an Advanced Torsional Spring for Tracked Vehicle Suspension in 2S1 Vehicle Model, Engineering Structures, 229, 2021.
  • 10. H. Mayer, R. Schuller, U. Karr, D. Irrasch, M. Fitzka, M. Hahn, and M. Bacher-Höchst, Cyclic Torsion Very High Cycle Fatigue of VDSiCr Spring Steel at Different Load Ratios, International Journal of Fatigue, Elsevier Ltd, 70, 322–327, 2015.
  • 11. T. V. Rajamurugan, K. Shanmugam, and K. Palanikumar, Analysis of Delamination in Drilling Glass Fiber Reinforced Polyester Composites, Materials and Design, Elsevier Ltd, 45, 80–87, 2013.
  • 12. V. Močilnik, N. Gubeljak, J. Predan, and J. Flašker, The Influence of Constant Axial Compression Pre-Stress on the Fatigue Failure of Torsion Loaded Tube Springs, Engineering Fracture Mechanics, 77(16), 3132–3142, 2010.
  • 13. M. Hietala, A. Järvenpää, M. Keskitalo, M. Jaskari, and K. Mäntyjärvi, Tensile and Fatigue Properties of Laser-Welded Ultra-High-Strength Stainless Spring Steel Lap Joints, Procedia Manufacturing, Elsevier B.V., 36, 131–137, 2019.
  • 14. B. Xia, B. Wang, P. Zhang, C. Ren, Q. Duan, X. Li, and Z. Zhang, Improving the High-Cycle Fatigue Life of a High-Strength Spring Steel for Automobiles by Suitable Shot Peening and Heat Treatment, International Journal of Fatigue, Elsevier Ltd, 161(March), 106891, 2022.
  • 15. H. Wei, Y. li Chen, W. Yu, L. Su, X. Wang, and D. Tang, Study on Corrosion Resistance of High-Strength Medium-Carbon Spring Steel and Its Hydrogen-Induced Delayed Fracture, Construction and Building Materials, Elsevier Ltd, 239, 117815, 2020.

Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine

Year 2022, , 44 - 54, 30.12.2022
https://doi.org/10.52795/mateca.1197167

Abstract

In this study, a tension extension spring fatigue machine was designed and manufactured. The force applied by jaws were driven by pneumatic piston. The air pressure is 6 bar that acquired from local pneumatic network. The maximum force was designed to meet at least 12 kN. Thereby, multiple quantity of extension springs can be tested simultaneously. The applied force can be adjusted pneumatic air pressure adjuster. The fatigue cycles were controlled by an electronic circuit. The machine is also designed to complement desired number of fatigue cycles. For this reason, a counter was also added to controller. Manufacturing of the machine elements and its tolerances were also described in detail.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, and T. Bruckmann, Mission Profiling of Road Data Measurement for Coil Spring Fatigue Life, Measurement: Journal of the International Measurement Confederation, Elsevier Ltd, 107, 99–110, 2017.
  • 2. P. Zhang, D. Wang, Y. Guo, P. Cheng, C. Shao, N. Lang, X. Liu, and J. Huang, Fatigue Failure Analysis and Finite Element Assessment of the Twins Torsion Spring, Engineering Failure Analysis, Elsevier Ltd, 122(July 2020), 105187, 2021.
  • 3. Y.T. Tsai, P.C. Lin, Y.W. Chen, S.H. Wang, and J.R. Yang, Fatigue Behavior and Microstructural Characteristics of a Duplex Stainless Steel Weld Metal under Vibration-Assisted Welding, Materials Science and Engineering A, Elsevier B.V., 721(February), 319–327, 2018.
  • 4. R. Manouchehrynia, S. Abdullah, and S.S.K. Singh, Fatigue-Based Reliability in Assessing the Failure of an Automobile Coil Spring under Random Vibration Loadings, Engineering Failure Analysis, Elsevier Ltd, 131(September 2021), 105808, 2022.
  • 5. D.Q.Q. Wang, Q. Wang, Y.K. Zhu, P. Zhang, Z.J. Zhang, C.X. Ren, X.W. Li, and Z.F. Zhang, Evaluating the Fatigue Cracking Risk of Surface Strengthened 50CrMnMoVNb Spring Steel with Abnormal Life Time Distribution, Materials Science and Engineering A, 732(May), 192–204, 2018.
  • 6. U. Karr, Y. Sandaiji, R. Tanegashima, S. Murakami, B. Schönbauer, M. Fitzka, and H. Mayer, Inclusion Initiated Fracture in Spring Steel under Axial and Torsion Very High Cycle Fatigue Loading at Different Load Ratios, International Journal of Fatigue, Elsevier, 134(January), 105525, 2020.
  • 7. F. ÖZEN, U. DAM, M.K. ÇOBANOĞLU, E. İLHAN, and S. ASLANLAR, Design and Manufacturing of a Pneumatic Driven Compression Spring Fatigue Machine, European Mechanical Science, 5(4), 189–193, 2021.
  • 8. F. Özen, A. Ilhan, H.T. Sezan, E. Ilhan, and S. Aslanlar, Effect of the Galvanization Process on the Fatigue Life of High Strength Steel Compression Springs, Materialpruefung/Materials Testing, 63(3), 226–230, 2021.
  • 9. T. Nabagło, A. Jurkiewicz, and J. Kowal, Modeling Verification of an Advanced Torsional Spring for Tracked Vehicle Suspension in 2S1 Vehicle Model, Engineering Structures, 229, 2021.
  • 10. H. Mayer, R. Schuller, U. Karr, D. Irrasch, M. Fitzka, M. Hahn, and M. Bacher-Höchst, Cyclic Torsion Very High Cycle Fatigue of VDSiCr Spring Steel at Different Load Ratios, International Journal of Fatigue, Elsevier Ltd, 70, 322–327, 2015.
  • 11. T. V. Rajamurugan, K. Shanmugam, and K. Palanikumar, Analysis of Delamination in Drilling Glass Fiber Reinforced Polyester Composites, Materials and Design, Elsevier Ltd, 45, 80–87, 2013.
  • 12. V. Močilnik, N. Gubeljak, J. Predan, and J. Flašker, The Influence of Constant Axial Compression Pre-Stress on the Fatigue Failure of Torsion Loaded Tube Springs, Engineering Fracture Mechanics, 77(16), 3132–3142, 2010.
  • 13. M. Hietala, A. Järvenpää, M. Keskitalo, M. Jaskari, and K. Mäntyjärvi, Tensile and Fatigue Properties of Laser-Welded Ultra-High-Strength Stainless Spring Steel Lap Joints, Procedia Manufacturing, Elsevier B.V., 36, 131–137, 2019.
  • 14. B. Xia, B. Wang, P. Zhang, C. Ren, Q. Duan, X. Li, and Z. Zhang, Improving the High-Cycle Fatigue Life of a High-Strength Spring Steel for Automobiles by Suitable Shot Peening and Heat Treatment, International Journal of Fatigue, Elsevier Ltd, 161(March), 106891, 2022.
  • 15. H. Wei, Y. li Chen, W. Yu, L. Su, X. Wang, and D. Tang, Study on Corrosion Resistance of High-Strength Medium-Carbon Spring Steel and Its Hydrogen-Induced Delayed Fracture, Construction and Building Materials, Elsevier Ltd, 239, 117815, 2020.
There are 15 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Material Production Technologies, Manufacturing and Industrial Engineering
Journal Section Research Articles
Authors

Fatih Özen 0000-0002-2915-8456

Muhammet Kaan Çobanoğlu 0000-0001-5768-240X

Ahmet İlhan 0000-0001-5182-9001

Hakkı Taner Sezan 0000-0001-6594-5409

Salim Aslanlar 0000-0001-6594-5409

Project Number -
Publication Date December 30, 2022
Submission Date November 1, 2022
Published in Issue Year 2022

Cite

APA Özen, F., Çobanoğlu, M. K., İlhan, A., Sezan, H. T., et al. (2022). Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine. İmalat Teknolojileri Ve Uygulamaları, 3(3), 44-54. https://doi.org/10.52795/mateca.1197167
AMA Özen F, Çobanoğlu MK, İlhan A, Sezan HT, Aslanlar S. Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine. MATECA. December 2022;3(3):44-54. doi:10.52795/mateca.1197167
Chicago Özen, Fatih, Muhammet Kaan Çobanoğlu, Ahmet İlhan, Hakkı Taner Sezan, and Salim Aslanlar. “Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine”. İmalat Teknolojileri Ve Uygulamaları 3, no. 3 (December 2022): 44-54. https://doi.org/10.52795/mateca.1197167.
EndNote Özen F, Çobanoğlu MK, İlhan A, Sezan HT, Aslanlar S (December 1, 2022) Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine. İmalat Teknolojileri ve Uygulamaları 3 3 44–54.
IEEE F. Özen, M. K. Çobanoğlu, A. İlhan, H. T. Sezan, and S. Aslanlar, “Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine”, MATECA, vol. 3, no. 3, pp. 44–54, 2022, doi: 10.52795/mateca.1197167.
ISNAD Özen, Fatih et al. “Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine”. İmalat Teknolojileri ve Uygulamaları 3/3 (December 2022), 44-54. https://doi.org/10.52795/mateca.1197167.
JAMA Özen F, Çobanoğlu MK, İlhan A, Sezan HT, Aslanlar S. Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine. MATECA. 2022;3:44–54.
MLA Özen, Fatih et al. “Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine”. İmalat Teknolojileri Ve Uygulamaları, vol. 3, no. 3, 2022, pp. 44-54, doi:10.52795/mateca.1197167.
Vancouver Özen F, Çobanoğlu MK, İlhan A, Sezan HT, Aslanlar S. Design and Manufacturing of Pneumatic Driven Extension Spring Fatigue Machine. MATECA. 2022;3(3):44-5.