Research Article
BibTex RIS Cite

Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods

Year 2023, , 25 - 36, 30.04.2023
https://doi.org/10.52795/mateca.1265509

Abstract

Additive manufacturing is a manufacturing method that includes systems that produce using many different methods. The most widely used and accessible methods of additive manufacturing can be listed as Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and UV light assisted Stereolithography (SLA). Today, it is quite easy to produce thermoplastic products suitable for direct use in low quantities with these three methods. In addition, the production success of the parts produced in geometric difficulties also increases this demand. The most important problem is the lack of sufficient studies and information about the strength limits, surface quality and costs of the parts produced for additive manufacturing methods with such advantages. In this study, the comparison of three different production methods in terms of surface roughness, strength and cost is discussed in order to eliminate this deficiency in the literature. For this purpose, the tensile strength and surface roughness values of the samples produced using FDM, SLS and SLA methods were determined. In addition, cost analyzes were made depending on the production time of the produced samples. In the study, the lowest cost was obtained in the SLA material with a value of $ 0.19. Again, the lowest values were obtained for the samples produced from SLA material, with a production time of 17 minutes and a surface roughness of 1.96µm compared to other methods. However, when evaluated in terms of strength, the highest strength value was obtained as 57.67 N/mm2 in the FDM method.

References

  • 1. H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, J.H. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science, 111:100638, 2020.
  • 2. X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D Printable Graphene Composite, Scientific Reports, 5(1):11181, 2015.
  • 3. D. Küpper, W. Heising, G. Corman, M. Wolfgang, C. Knizek, V. Lukic, Get ready for industrialized additive manufacturing, Digit. Bost. Consult. Gr. 1–15, 2019.
  • 4. S. Gantenbein, K. Masania, W. Woigk, J.P.W. Sesseg, T.A. Tervoort, A.R. Studart, Three-dimensional printing of hierarchical liquid-crystal-polymer structures, Nature, 561: 226–230, 2018.
  • 5. Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H., 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl. Mater. Today, 9: 21–28, 2017.
  • 6. K. Kim, J. Park, J. Suh, M. Kim, Y. Jeong, I. Park, 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments, Sensors Actuators, A Phys. 263:493–500, 2017.
  • 7. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composite Part B: Engineering, 143:172-196, 2018.
  • 8. S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, A. Arias, Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties, Materials and Design, 188, 108414, 2020.
  • 9. D.I. Stoia, E. Linul, L. Marsavina, Influence of manufacturing parameters on mechanical properties of porous materials by selective laser sintering, Materials (Basel), 12 (6):871, 2019.
  • 10. Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A., Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process, 15: 107–122, 2000.
  • 11. J. Maloch, E. Hnátková, M. Žaludek, P. Krátký, Effect of processing parameters on mechanical properties of 3D printed samples, Mater. Sci. Forum, 919: 230–235, 2018.
  • 12. A. Rodríguez-Panes, J. Claver, A.M. Camacho, The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis, Materials (Basel), 11(8), 1333, 2018.
  • 13. S. Rohde, J. Cantrell, A. Jerez, C. Kroese, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, D. Steinbach, P. Ifju, Experimental Characterization of the Shear Properties of 3D–Printed ABS and Polycarbonate Parts, Exp. Mech., 58: 871–884, 2018.
  • 14. L. Warnung, K. Landsteiner, S.E. Karl, L. Privatuniversität, A, Reisinger, K. Landsteiner, Mechanical Properties of Fused Deposition Modeling (FDM) 3D Printing Materials, RTejournal-Fachforum für Rapid Technologien, 1–18, 2018.
  • 15. Vǎlean, C., Marşavina, L., Mǎrghitaşl, M., Linul, E., Razavi, J., Berto, F., Effect of manufacturing parameters on tensile properties of FDM printed specimens, Procedia Structural Integrity, 313–320, 2020.
  • 16. J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Additive Manufacturing, 20:44-67, 2018.
  • 17. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110: 442-458, 2017.
  • 18. J.S. Saini, L. Dowling, J. Kennedy, D. Trimble, Investigations of the mechanical properties on different print orientations in SLA 3D printed resin, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234: 2279-2293, 2020.
  • 19. P.F. Jacobs, Rapid Prototyping and Manufacturing, Fundamentals of Stereolithography, Society of Manufacturing Engineers, Dearborn, MI, 1992.
  • 20. Mahn, J.P., Bayly, P. V., Impact testing of stereolithographic models to predict natural frequencies, Journal of Sound and Vibration, 224(3): 411-430, 1999.
  • 21. Benerjee A. Sinha., Shekar K. P. Roy, Benerjee M.K., A study of SLA process parameter over strength of built model, National level symposium on Rapid Prototyping & Tooling, Vol 1, Proceedings of the 2nd National Symposium on Rapid Prototyping & Rapid Tooling Technologies, 2002.
  • 22. Chockalingam, K., Jawahar, N., Chandrasekhar, U., Influence of layer thickness on mechanical properties in stereolithography, Rapid Prototyping Journal, 12(2): 106–113, 2006.
  • 23. T. Wohlers, Wohlers report, Wohlers Associates. Inc. Fort Collins, CO, USA, 2007.
  • 24. H. Zarringhalam, N. Hopkinson, N.F. Kamperman, J.J. Vlieger, Effects of processing on microstructure and properties of SLS Nylon 12. Mater. Sci. Eng. A, 435-436: 172-180, 2006.
  • 25. Burke, C., Dalal, A., Abukhalaf, A., Noorani, R., Effects of process parameter variation on the surface roughness of Polylactic acid (PLA) materials using design of experiments (DOE). In IOP Conference Series: Materials Science and Engineering, 897(1): 012003, 2020.
  • 26. M. Launhardt, A. Wörz, A. Loderer, T. Laumer, D. Drummer, T. Hausotte, M. Schmidt, Detecting surface roughness on SLS parts with various measuring techniques, Polymer Testing, 53: 217-226, 2016.
  • 27. R.V. Pazhamannil, H.M. Hadidi, G. Puthumana, Development of a low-cost volumetric additive manufacturing printer using less viscous commercial resins, Polym. Eng. Sci., 63(1):65, 2023.
  • 28. D. Thomas, W.G. Stanley, Costs and Cost Effectiveness of Additive Manufacturing A Literature Review and Discussion, NIST Special Publication, 2014.

Farklı Katkılı Üretim Yöntemlerinin Dayanım, Yüzey Kalitesi Ve Maliyetlerinin Karşılaştırılması

Year 2023, , 25 - 36, 30.04.2023
https://doi.org/10.52795/mateca.1265509

Abstract

Katmanlı imalat, birçok farklı yöntem kullanılarak üretim yapan sistemleri içeren bir imalat yöntemidir. Katmanlı imalat yöntemlerinden en yaygın kullanılan ve erişilebilir yöntemler Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) ve UV ışık destekli Stereolitografi (SLA) olarak sıralanabilir. Günümüzde bu üç yöntem ile düşük miktarlarda doğrudan kullanıma uygun termoplastik ürünler üretmek oldukça kolaydır. Bunun yanında geometrik zorluklarda üretilen parçaların üretim başarısı da bu talebi arttırmaktadır. Bu kadar avantaja sahip katmanlı imalat yöntemleri için üretilen parça dayanım limitleri, yüzey kalitesi ve maliyetleri hakkında yeterli çalışma ve bilgi olmaması en önemli sorun olarak karşımıza çıkmaktadır. Bu çalışmada literatürdeki bu eksikliği gidermek amacıyla üç farklı üretim yöntemi yüzey pürüzlülüğü, mukavemet ve maliyet açısından karşılaştırılması ele alınmıştır. Bu amaçla FDM, SLS ve SLA yöntemleri kullanılarak üretilen numunelerin çekme dayanımları, yüzey pürüzlülük değerleri belirlenmiştir. Ayrıca üretilen numunelerin üretim süresine bağlı olarak maliyet analizleri yapılmıştır. Çalışmada en düşük maliyet 0.19 $ değer ile SLA malzemede elde edilmiştir. Yine SLA malzemeden üretilen numuneler için 17 dakika üretim süresi ve 1.96µm yüzey pürüzlülük değerleri diğer yöntemlere nazaran en düşük değerler elde edilmiştir. Ancak dayanım açısından değerlendiğinde en yüksek dayanım değeri FDM yönteminde 57.67 N/mm2 olarak elde edilmiştir.

References

  • 1. H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, J.H. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science, 111:100638, 2020.
  • 2. X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D Printable Graphene Composite, Scientific Reports, 5(1):11181, 2015.
  • 3. D. Küpper, W. Heising, G. Corman, M. Wolfgang, C. Knizek, V. Lukic, Get ready for industrialized additive manufacturing, Digit. Bost. Consult. Gr. 1–15, 2019.
  • 4. S. Gantenbein, K. Masania, W. Woigk, J.P.W. Sesseg, T.A. Tervoort, A.R. Studart, Three-dimensional printing of hierarchical liquid-crystal-polymer structures, Nature, 561: 226–230, 2018.
  • 5. Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H., 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl. Mater. Today, 9: 21–28, 2017.
  • 6. K. Kim, J. Park, J. Suh, M. Kim, Y. Jeong, I. Park, 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments, Sensors Actuators, A Phys. 263:493–500, 2017.
  • 7. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composite Part B: Engineering, 143:172-196, 2018.
  • 8. S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, A. Arias, Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties, Materials and Design, 188, 108414, 2020.
  • 9. D.I. Stoia, E. Linul, L. Marsavina, Influence of manufacturing parameters on mechanical properties of porous materials by selective laser sintering, Materials (Basel), 12 (6):871, 2019.
  • 10. Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A., Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process, 15: 107–122, 2000.
  • 11. J. Maloch, E. Hnátková, M. Žaludek, P. Krátký, Effect of processing parameters on mechanical properties of 3D printed samples, Mater. Sci. Forum, 919: 230–235, 2018.
  • 12. A. Rodríguez-Panes, J. Claver, A.M. Camacho, The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis, Materials (Basel), 11(8), 1333, 2018.
  • 13. S. Rohde, J. Cantrell, A. Jerez, C. Kroese, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, D. Steinbach, P. Ifju, Experimental Characterization of the Shear Properties of 3D–Printed ABS and Polycarbonate Parts, Exp. Mech., 58: 871–884, 2018.
  • 14. L. Warnung, K. Landsteiner, S.E. Karl, L. Privatuniversität, A, Reisinger, K. Landsteiner, Mechanical Properties of Fused Deposition Modeling (FDM) 3D Printing Materials, RTejournal-Fachforum für Rapid Technologien, 1–18, 2018.
  • 15. Vǎlean, C., Marşavina, L., Mǎrghitaşl, M., Linul, E., Razavi, J., Berto, F., Effect of manufacturing parameters on tensile properties of FDM printed specimens, Procedia Structural Integrity, 313–320, 2020.
  • 16. J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Additive Manufacturing, 20:44-67, 2018.
  • 17. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110: 442-458, 2017.
  • 18. J.S. Saini, L. Dowling, J. Kennedy, D. Trimble, Investigations of the mechanical properties on different print orientations in SLA 3D printed resin, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234: 2279-2293, 2020.
  • 19. P.F. Jacobs, Rapid Prototyping and Manufacturing, Fundamentals of Stereolithography, Society of Manufacturing Engineers, Dearborn, MI, 1992.
  • 20. Mahn, J.P., Bayly, P. V., Impact testing of stereolithographic models to predict natural frequencies, Journal of Sound and Vibration, 224(3): 411-430, 1999.
  • 21. Benerjee A. Sinha., Shekar K. P. Roy, Benerjee M.K., A study of SLA process parameter over strength of built model, National level symposium on Rapid Prototyping & Tooling, Vol 1, Proceedings of the 2nd National Symposium on Rapid Prototyping & Rapid Tooling Technologies, 2002.
  • 22. Chockalingam, K., Jawahar, N., Chandrasekhar, U., Influence of layer thickness on mechanical properties in stereolithography, Rapid Prototyping Journal, 12(2): 106–113, 2006.
  • 23. T. Wohlers, Wohlers report, Wohlers Associates. Inc. Fort Collins, CO, USA, 2007.
  • 24. H. Zarringhalam, N. Hopkinson, N.F. Kamperman, J.J. Vlieger, Effects of processing on microstructure and properties of SLS Nylon 12. Mater. Sci. Eng. A, 435-436: 172-180, 2006.
  • 25. Burke, C., Dalal, A., Abukhalaf, A., Noorani, R., Effects of process parameter variation on the surface roughness of Polylactic acid (PLA) materials using design of experiments (DOE). In IOP Conference Series: Materials Science and Engineering, 897(1): 012003, 2020.
  • 26. M. Launhardt, A. Wörz, A. Loderer, T. Laumer, D. Drummer, T. Hausotte, M. Schmidt, Detecting surface roughness on SLS parts with various measuring techniques, Polymer Testing, 53: 217-226, 2016.
  • 27. R.V. Pazhamannil, H.M. Hadidi, G. Puthumana, Development of a low-cost volumetric additive manufacturing printer using less viscous commercial resins, Polym. Eng. Sci., 63(1):65, 2023.
  • 28. D. Thomas, W.G. Stanley, Costs and Cost Effectiveness of Additive Manufacturing A Literature Review and Discussion, NIST Special Publication, 2014.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mehmet Mahir Sofu 0000-0002-0010-0832

Hatice Varol Özkavak 0000-0002-0314-0119

Selim Bacak 0000-0002-9640-2893

Mehmet Fenkli 0000-0001-7660-9849

Early Pub Date April 30, 2023
Publication Date April 30, 2023
Submission Date March 15, 2023
Published in Issue Year 2023

Cite

APA Sofu, M. M., Varol Özkavak, H., Bacak, S., Fenkli, M. (2023). Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods. İmalat Teknolojileri Ve Uygulamaları, 4(1), 25-36. https://doi.org/10.52795/mateca.1265509
AMA Sofu MM, Varol Özkavak H, Bacak S, Fenkli M. Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods. MATECA. April 2023;4(1):25-36. doi:10.52795/mateca.1265509
Chicago Sofu, Mehmet Mahir, Hatice Varol Özkavak, Selim Bacak, and Mehmet Fenkli. “Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods”. İmalat Teknolojileri Ve Uygulamaları 4, no. 1 (April 2023): 25-36. https://doi.org/10.52795/mateca.1265509.
EndNote Sofu MM, Varol Özkavak H, Bacak S, Fenkli M (April 1, 2023) Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods. İmalat Teknolojileri ve Uygulamaları 4 1 25–36.
IEEE M. M. Sofu, H. Varol Özkavak, S. Bacak, and M. Fenkli, “Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods”, MATECA, vol. 4, no. 1, pp. 25–36, 2023, doi: 10.52795/mateca.1265509.
ISNAD Sofu, Mehmet Mahir et al. “Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods”. İmalat Teknolojileri ve Uygulamaları 4/1 (April 2023), 25-36. https://doi.org/10.52795/mateca.1265509.
JAMA Sofu MM, Varol Özkavak H, Bacak S, Fenkli M. Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods. MATECA. 2023;4:25–36.
MLA Sofu, Mehmet Mahir et al. “Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods”. İmalat Teknolojileri Ve Uygulamaları, vol. 4, no. 1, 2023, pp. 25-36, doi:10.52795/mateca.1265509.
Vancouver Sofu MM, Varol Özkavak H, Bacak S, Fenkli M. Comparison of Strength, Surface Quality and Cost of Different Additive Manufacturing Methods. MATECA. 2023;4(1):25-36.