Review
BibTex RIS Cite

Ultrasonik atomizasyon: toz üretiminde alternatif bir yol

Year 2023, , 81 - 91, 30.08.2023
https://doi.org/10.52795/mateca.1290558

Abstract

Metal tozlarının eklemeli imalatta kullanımı gün geçtikçe artmaktadır. Metal tozu, tüm bu proseslerin hammaddesi olup nihai ürünün fiziksel, kimyasal ve mekanik özelliklerinin yanı sıra boyut ve tolerans değerleri gibi özelliklerini belirlemektedir. Konvansiyonel atomizasyon prosesleri ile toz üretimi, seri üretime uygunluğu, yüksek kalitede metal tozu ve düşük maliyetli üretim imkanı ile dikkat çekmektedir. Ancak, partikül boyut dağılımı ve küreselliği, eklemeli imalat proseslerinde kullanılacak toz kalitesi ve son ürün maliyeti için belirleyici faktörlerdir. Atomizasyon prosesinde kullanılan başlangıç hammaddesi de üretilen tozun kalitesi ve fiyatını etkiler. Dolayısıyla, yüksek kalitede ve uygun maliyetli toz üretimi için atomizasyon proseslerinin parametreleri (ergimiş metalin sıcaklığı, atomizasyon atmosferi ve türü gibi) üretim öncesinde belirlenmelidir. Ultrasonik atomizasyon yöntemi, konvansiyonel yöntemlere göre daha düşük maliyetle yüksek kalitede toz üretilebilmekte ve özellikle eklemeli imalat alanında ihtiyaç duyulan partikül boyut dağılımı ve akışkanlığı karşılayabilmektedir. Bu çalışmada ultrasonik atomizasyon yönteminin çalışma mekanizmasının incelenmiş ve konvansiyonel atomizasyon teknikleri ile nihai ürün kalitesi açısından arada oluşan farklar karşılaştırılmıştır.

References

  • 1. J. M. Torralba, Powder Metallurgy: A New Open Section in Metals, Metals, 11(10):1519, 2021.
  • 2. P.C. Angelo, R. Subramanian, B. Ravisankar, Powder metallurgy: science, technology and applications, 2022.
  • 3. M. Powders, H. Flowmeter, F. Spectrometry, Standard guide for characterizing properties of metal powders used for additive manufacturing processes, ASTM Int: F-14. ASTM International, 2014.
  • 4. A. Lawley, Preparation of metal powders, Annual Review of Materials Science, 8(1):49-71, 1978.
  • 5. F.V. Lenel, G.S. Ansell, The State of the Science and Art of Powder Metallurgy, Journal of Metals, 34(2):17-29, 1982.
  • 6. G.S. Upadhyaya, Powder metallurgy technology, Cambridge Int Science Publishing, 2002.
  • 7. A.B. Spierings, N. Herres, G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyping Journal, 17(3):195-202, 2011.
  • 8. P. Samal, J. Newkirk, Powder metallurgy methods and applications, ASM handbook of powder metallurgy, 2015.
  • 9. I. Chang, Y. Zhao, Advances in powder metallurgy: properties, processing and applications, Elsevier, 2013.
  • 10. M. Krantz, H. Zhang, J. Zhu, Characterization of powder flow: Static and dynamic testing, Powder Technology, 194(3): 239-245, 2009.
  • 11. Ş. Karagöz, R. Yamanoğlu, Ş.H. Atapek, Metalik toz işleme teknolojisi ve prosesleme kademeleri açısından parametrik ilişkiler, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 22(3): 77-87, 2009.
  • 12. G. S Upadhyaya, Powder Metallurgy Methods and Design, Vol.7. ASM Metals Handbook, 1997.
  • 13. S.H. Saheb, V.K. Durgam, A. Chandrashekhar, A review on metal powders in additive manufacturing, AIP Publishing LLC. in AIP Conference Proceedings, 2020.
  • 14. K.K., A. Perveen, Atomization processes of metal powders for 3D printing, Materials today: proceedings, 26:1727-1733, 2020.
  • 15. F. Lemoisson, L. Froyen, Understanding and improving powder metallurgical processes, 2005.
  • 16. A. Popovich, V. Sufiiarov, Metal powder additive manufacturing, in New trends in 3D printing, IntechOpen, 2016.
  • 17. K.V. Wong, A. Hernandez, A review of additive manufacturing, International scholarly research notices, 2012.
  • 18. J. Clayton, Optimising metal powders for additive manufacturing, Metal Powder Report, 69(5): 14-17, 2014.
  • 19. Z. Snow, R. Martukanitz, S. Joshi, On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing, Additive Manufacturing, 28:78-86, 2019.
  • 20. A.B. Spierings, M. Voegtlin, T.U. Bauer, K. Wegener, Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing, Progress in Additive Manufacturing, 1:9-20, 2016.
  • 21. A.T. Sutton, C.S. Kriewall, M.C. Leu, J. William Newkirk, Powders for additive manufacturing processes: Characterization techniques and effects on part properties, in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016.
  • 22. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, Max.A. Peltz, Characterization of metal powders used for additive manufacturing, Journal of research of the National Institute of Standards Technology, 119: 460, 2014.
  • 23. S. Hoeges, A. Zwiren, C. Schade, Additive manufacturing using water atomized steel powders, Metal Powder Report, 72(2):111-117, 2017.
  • 24. M.Z. Gao, B. Ludwig, T.A. Palmer, Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing, Powder Technology, 383:30-42, 2021.
  • 25. A. Martín, C.M. Cepeda-Jiménez, M.T. Pérez-Prado, Gas atomization of γ‐TiAl alloy powder for additive manufacturing, Advanced Engineering Materials, 22(1): 1900594, 2020.
  • 26. A.J. Yule, J.J. Dunkley, Atomization of melts: for powder production and spray deposition, Oxford University Press, USA, 1994.
  • 27. R.Boom, F.R. De Boer, Energy effects in bulk metals, in Encyclopedia of Materials: Science and Technology, Elsevier, 1-7, 2006.
  • 28. J.J. Dunkley, Advances in atomisation techniques for the formation of metal powders, in Advances in Powder Metallurgy, Elsevier, 3-18 ,2013.
  • 29. M. Entezarian, F. Allaire, P. Tsantrizos, R.A.L. Drew, Plasma atomization: A new process for the production of fine, spherical powders, Journal of Metals, 48:53-55, 1996.
  • 30. A. Lawley, Atomization of specialty alloy powders, Journal of Metals, 33:13-18, 1981.
  • 31. P. S., Z.Z. Fang, Y. Zhang ve Y. Xia, Review of the methods for production of spherical Ti and Ti alloy powder, Journal Of Metals, 69: 1853-1860, 2017.
  • 32. L.V.M. Antony, R.G. Reddy, Processes for production of high-purity metal powders, Journal of Metals, 55: 14-18, 2003.
  • 33. L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science Engineering, 102(1), 2020.
  • 34. I. Anderson, J. Rieken, J. Meyer, D. Byrd, A. Heidloff, visualization of atomization gas flow and melt break-up effects in response to nozzle design, Ames Lab., Ames, IA (United States), 2011.
  • 35. D. Singh, S. Dangwal, Effects of process parameters on surface morphology of metal powders produced by free fall gas atomization, Journal of materials science, 41: 3853-3860, 2006.
  • 36. K. Grzelak, M. Bielecki, J. Kluczyński, I. Szachogłuchowicz, L. Śnieżek, J. Torzewski, J. Łuszczek, Ł. Słoboda, M. Wachowski, Z. Komorek, A comparative study on laser powder bed fusion of differently atomized 316L stainless steel, Materials, 15(14): 4938, 2022.
  • 37. R. Pohlman, K. Heisler, M. Cichos, Powdering aluminium and aluminium alloys by ultrasound, Ultrasonics, 12(1): 11-15, 1974.
  • 38. A.J. Yule, Y. Al–Suleimani, On droplet formation from capillary waves on a vibrating surface, Proceedings of the Royal Society of London, Series A: Mathematical, Physical Engineering Sciences, 456(1997):1069-1085, 2000.
  • 39. S.H. Alavi, S.P. Harimkar, Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel, Ultrasonics, 94:305-313, 2019.
  • 40. Ł. Żrodowski, R. Wróblewski, T. Choma, B. Morończyk, Ma. Ostrysz, M. Leonowicz, W. Łacisz, P. Błyskun, J.S. Wróbel, G. Cieślak, Novel cold crucible ultrasonic atomization powder production method for 3D printing, Materials, 14(10): 2541, 2021.
  • 41. M. Bielecki, R. Ralowicz, L. Sloboda, Method and device for producing heavy metal powders by ultrasonic atomization, Google Patents, 2022.
  • 42. R.J. Lang, Ultrasonic atomization of liquids, The journal of the acoustical society of America, 34(1): 6-8, 1962.
  • 43. S. Wisutmethangoon, T. Plookphol, P. Sungkhaphaitoon, Production of SAC305 powder by ultrasonic atomization, Powder Technology, 209(1-3):105-111, 2011.
  • 44. A. Endo, T. Asami, T. Ono, H. Miura, Particle size of non-contact atomization of low surface tension liquid by powerful aerial ultrasonic, in 2015 IEEE International Ultrasonics Symposium (IUS), IEEE, 2015.
  • 45. Y. Akyıldız, O. Öztürk, B. Simsar, Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3): 699-704, 2021.
  • 46. Y. Akyıldız, A. Akman, B. Horasan, R. Yamanoğlu, H. Aydın, Investigating the effect of quenching media and agitation conditions on the microstructure, hardness, and stress distribution of AISI 4140 steel by using FEM, 16. Mas International European Conference On Mathematics, Engineering, Natural and Medical Sciences, 156-163, 2022.
  • 47. Y. Akyıldız, Y. Arslan, H. Aydın, R. Yamanoğlu, Fe-Mn-C Çeli̇ği̇ni̇n Calphad Metodoloji̇si̇ ile Hesaplanan Si̇nterleme Sıcaklığının Mekani̇k Özelli̇kler Üzeri̇ne Etki̇si̇, 16. Mas International European Conference On Mathematics, Engineering, Natural & Medical Sciences, 164-174, 2022.
  • 48. R. Yamanoğlu, Y. Akyıldız, O. Öztürk, AlSi10Mg alaşımının toz metalurjisi ile üretimi: basınç destekli sinterleme ve calphad metodolojisi, International Symposium of Scientific Research and Innovative Studies, Bandırma Onyedi Eylül Üniversitesi, 2021.
  • 49. K. Yasuda, H. Honma, Z. Xu, Y. Asakura, S. Koda, Ultrasonic atomization amount for different frequencies. Japanese Journal of Applied Physics, 50(7S):07HE23, 2011.
  • 50. S.H. Alavi, S.P. Harimkar, Ultrasonic vibration-assisted laser atomization of stainless steel, Powder Technology, 321:89-93, 2017.
  • 51. M. Bielecki, J. Kluczyński, Ł. Słoboda, Manufacturing of metallic powders for AM market by ultrasonic atomization method, Proceedings of the Metal Additive Manufacturing Conference (MAMC 2021), Vienna, Austria, 2021.
  • 52. X.G. Li, Q. Zhu, S. Shu, J.Z Fan, S.M. Zhang, Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter, Powder Technology, 356:759-768, 2019.
  • 53. A.S. Jabur, Effect of powder metallurgy conditions on the properties of porous bronze, Powder Technology, 237:477-483, 2013.
  • 54. B. Verlee, T. Dormal, J. Lecomte-Beckers, Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing, Powder Metallurgy, 55(4): 260-267, 2012.
  • 55. A. Simchi, The role of particle size on the laser sintering of iron powder, Metallurgical Materials Transactions B, 35:937-948, 2004.
  • 56. G. Rai, E. Lavernia, N.J., Grant, Powder size and distribution in ultrasonic gas atomization, Journal of Metals, 37(8): 22-26, 1985.
  • 57. D. Božić, J.M. Stašić, V.M. Rajković, Microstructures and mechanical properties of ZA27-Al2O3 composites obtained by powder metallurgy process, Science of Sintering, 43(1):63-70, 2011.
  • 58. A. Strondl, O. Lyckfeldt, H. Brodin, U. Ackelid, Characterization and control of powder properties for additive manufacturing, Journal of Metals, 67:549-554, 2015.
  • 59. B. Błażej, M. Bielecki, W. Gulbiński, Ł. Słoboda, R. Rałowicz, J. Rozpendowski, Ultrasonic and other atomization methods comparison in metal powder production, Journal of Achievements in Materials and Manufacturing Engineer, 116:11-24, 2023.
  • 60. N. Bekoz, E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, Journal of Materials Processing Technology, 212(10):2109-2116, 2012.
  • 61. N. Bekoz, E. Oktay, High temperature mechanical properties of low alloy steel foams produced by powder metallurgy, Materials Design, 53:482-489, 2014.
  • 62. T. Yağcı, Ü. Cöcen, O. Çulha, A. Korkmaz, Bütünleşik Hesaplamalı Malzeme Mühendisliğinin Alüminyum Jant Üretiminde Kullanılabilirliği, 4.Ulusal Üniversite-Sanayi İş birliği Ar-Ge ve İnovasyon Kongresi, 269-277, 2021.
  • 63. K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, B. Nestler, Computational materials engineering: an introduction to microstructure evolution, Academic Press, 2010.
  • 64. T.J. Horn, O.L.A. Harrysson, Overview of current additive manufacturing technologies and selected applications, Science progress, 95(3):255-282, 2012.
  • 65. S. Negi, S. Dhiman, R.K. Sharma, Basics, applications and future of additive manufacturing technologies: A review, Journal of Manufacturing Technology Research, 5(1/2):75, 2013.
  • 66. B. Schoinochoritis, D. Chantzis, K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(1):96-117, 2017.
  • 67. J. Ma, L.C. Lim, Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts, Journal of the European Ceramic Society, 22(13): 2197-2208, 2002.
  • 68. W.H. Rhodes, Agglomerate and particle size effects on sintering yttria‐stabilized zirconia, Journal of the American Ceramic Society, 64(1):19-22, 1981.
  • 69. Y. Zhao, Y. Cui, Y. Hasebe, H. Bian, K. Yamanaka, K. Aoyagi, T. Hagisawa, A. Chiba, Controlling factors determining flowability of powders for additive manufacturing: A combined experimental and simulation study, Powder Technology, 393:482-493, 2021.
  • 70. N.B. Üllen, G. Karabulut, Gözenekli metalik malzeme üretiminde gözenek oranı ve küresellik arası ilişkinin incelenmesi,, 2nd International Eurasian Conference on Science, Engineering and Technology, 467-472, 2020.
  • 71. Z. Zhang, X.X. Yao, P. Ge, Phase-field-model-based analysis of the effects of powder particle on porosities and densities in selective laser sintering additive manufacturing, International Journal of Mechanical Sciences, 166:105230, 2020.
  • 72. G.E. Dieter, D. Bacon, Mechanical metallurgy, Vol. 3. McGraw-hill New York, 1976.

Ultrasonic atomization: an alternative path to powder production

Year 2023, , 81 - 91, 30.08.2023
https://doi.org/10.52795/mateca.1290558

Abstract

The use of metal powders in additive manufacturing is increasing day by day. Metal powder is the raw material for all these processes and determines the properties of the final product, such as its physical, chemical, and mechanical characteristics, as well as its dimensions and tolerance values. Metal powder production using conventional atomization processes is noteworthy due to its suitability for mass production, high-quality metal powder, and low-cost production. However, particle size distribution and sphericity are crucial factors for the quality of the powder used in additive manufacturing processes and the cost of the final product. The raw material used in the atomization process also affects the quality and price of the produced powder. Therefore, the parameters of the atomization processes, such as the melting temperature of the metal, the atomization ambient, and the type should be determined before production to achieve high-quality and cost-effective powder production. The ultrasonic atomization method can produce high-quality powder at a lower cost compared to conventional methods and can meet the particle size distribution and fluidity required in the additive manufacturing field. This study examines the ultrasonic atomization method's operating mechanism and compares the final product quality differences between conventional atomization techniques.

References

  • 1. J. M. Torralba, Powder Metallurgy: A New Open Section in Metals, Metals, 11(10):1519, 2021.
  • 2. P.C. Angelo, R. Subramanian, B. Ravisankar, Powder metallurgy: science, technology and applications, 2022.
  • 3. M. Powders, H. Flowmeter, F. Spectrometry, Standard guide for characterizing properties of metal powders used for additive manufacturing processes, ASTM Int: F-14. ASTM International, 2014.
  • 4. A. Lawley, Preparation of metal powders, Annual Review of Materials Science, 8(1):49-71, 1978.
  • 5. F.V. Lenel, G.S. Ansell, The State of the Science and Art of Powder Metallurgy, Journal of Metals, 34(2):17-29, 1982.
  • 6. G.S. Upadhyaya, Powder metallurgy technology, Cambridge Int Science Publishing, 2002.
  • 7. A.B. Spierings, N. Herres, G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyping Journal, 17(3):195-202, 2011.
  • 8. P. Samal, J. Newkirk, Powder metallurgy methods and applications, ASM handbook of powder metallurgy, 2015.
  • 9. I. Chang, Y. Zhao, Advances in powder metallurgy: properties, processing and applications, Elsevier, 2013.
  • 10. M. Krantz, H. Zhang, J. Zhu, Characterization of powder flow: Static and dynamic testing, Powder Technology, 194(3): 239-245, 2009.
  • 11. Ş. Karagöz, R. Yamanoğlu, Ş.H. Atapek, Metalik toz işleme teknolojisi ve prosesleme kademeleri açısından parametrik ilişkiler, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 22(3): 77-87, 2009.
  • 12. G. S Upadhyaya, Powder Metallurgy Methods and Design, Vol.7. ASM Metals Handbook, 1997.
  • 13. S.H. Saheb, V.K. Durgam, A. Chandrashekhar, A review on metal powders in additive manufacturing, AIP Publishing LLC. in AIP Conference Proceedings, 2020.
  • 14. K.K., A. Perveen, Atomization processes of metal powders for 3D printing, Materials today: proceedings, 26:1727-1733, 2020.
  • 15. F. Lemoisson, L. Froyen, Understanding and improving powder metallurgical processes, 2005.
  • 16. A. Popovich, V. Sufiiarov, Metal powder additive manufacturing, in New trends in 3D printing, IntechOpen, 2016.
  • 17. K.V. Wong, A. Hernandez, A review of additive manufacturing, International scholarly research notices, 2012.
  • 18. J. Clayton, Optimising metal powders for additive manufacturing, Metal Powder Report, 69(5): 14-17, 2014.
  • 19. Z. Snow, R. Martukanitz, S. Joshi, On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing, Additive Manufacturing, 28:78-86, 2019.
  • 20. A.B. Spierings, M. Voegtlin, T.U. Bauer, K. Wegener, Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing, Progress in Additive Manufacturing, 1:9-20, 2016.
  • 21. A.T. Sutton, C.S. Kriewall, M.C. Leu, J. William Newkirk, Powders for additive manufacturing processes: Characterization techniques and effects on part properties, in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016.
  • 22. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, Max.A. Peltz, Characterization of metal powders used for additive manufacturing, Journal of research of the National Institute of Standards Technology, 119: 460, 2014.
  • 23. S. Hoeges, A. Zwiren, C. Schade, Additive manufacturing using water atomized steel powders, Metal Powder Report, 72(2):111-117, 2017.
  • 24. M.Z. Gao, B. Ludwig, T.A. Palmer, Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing, Powder Technology, 383:30-42, 2021.
  • 25. A. Martín, C.M. Cepeda-Jiménez, M.T. Pérez-Prado, Gas atomization of γ‐TiAl alloy powder for additive manufacturing, Advanced Engineering Materials, 22(1): 1900594, 2020.
  • 26. A.J. Yule, J.J. Dunkley, Atomization of melts: for powder production and spray deposition, Oxford University Press, USA, 1994.
  • 27. R.Boom, F.R. De Boer, Energy effects in bulk metals, in Encyclopedia of Materials: Science and Technology, Elsevier, 1-7, 2006.
  • 28. J.J. Dunkley, Advances in atomisation techniques for the formation of metal powders, in Advances in Powder Metallurgy, Elsevier, 3-18 ,2013.
  • 29. M. Entezarian, F. Allaire, P. Tsantrizos, R.A.L. Drew, Plasma atomization: A new process for the production of fine, spherical powders, Journal of Metals, 48:53-55, 1996.
  • 30. A. Lawley, Atomization of specialty alloy powders, Journal of Metals, 33:13-18, 1981.
  • 31. P. S., Z.Z. Fang, Y. Zhang ve Y. Xia, Review of the methods for production of spherical Ti and Ti alloy powder, Journal Of Metals, 69: 1853-1860, 2017.
  • 32. L.V.M. Antony, R.G. Reddy, Processes for production of high-purity metal powders, Journal of Metals, 55: 14-18, 2003.
  • 33. L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science Engineering, 102(1), 2020.
  • 34. I. Anderson, J. Rieken, J. Meyer, D. Byrd, A. Heidloff, visualization of atomization gas flow and melt break-up effects in response to nozzle design, Ames Lab., Ames, IA (United States), 2011.
  • 35. D. Singh, S. Dangwal, Effects of process parameters on surface morphology of metal powders produced by free fall gas atomization, Journal of materials science, 41: 3853-3860, 2006.
  • 36. K. Grzelak, M. Bielecki, J. Kluczyński, I. Szachogłuchowicz, L. Śnieżek, J. Torzewski, J. Łuszczek, Ł. Słoboda, M. Wachowski, Z. Komorek, A comparative study on laser powder bed fusion of differently atomized 316L stainless steel, Materials, 15(14): 4938, 2022.
  • 37. R. Pohlman, K. Heisler, M. Cichos, Powdering aluminium and aluminium alloys by ultrasound, Ultrasonics, 12(1): 11-15, 1974.
  • 38. A.J. Yule, Y. Al–Suleimani, On droplet formation from capillary waves on a vibrating surface, Proceedings of the Royal Society of London, Series A: Mathematical, Physical Engineering Sciences, 456(1997):1069-1085, 2000.
  • 39. S.H. Alavi, S.P. Harimkar, Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel, Ultrasonics, 94:305-313, 2019.
  • 40. Ł. Żrodowski, R. Wróblewski, T. Choma, B. Morończyk, Ma. Ostrysz, M. Leonowicz, W. Łacisz, P. Błyskun, J.S. Wróbel, G. Cieślak, Novel cold crucible ultrasonic atomization powder production method for 3D printing, Materials, 14(10): 2541, 2021.
  • 41. M. Bielecki, R. Ralowicz, L. Sloboda, Method and device for producing heavy metal powders by ultrasonic atomization, Google Patents, 2022.
  • 42. R.J. Lang, Ultrasonic atomization of liquids, The journal of the acoustical society of America, 34(1): 6-8, 1962.
  • 43. S. Wisutmethangoon, T. Plookphol, P. Sungkhaphaitoon, Production of SAC305 powder by ultrasonic atomization, Powder Technology, 209(1-3):105-111, 2011.
  • 44. A. Endo, T. Asami, T. Ono, H. Miura, Particle size of non-contact atomization of low surface tension liquid by powerful aerial ultrasonic, in 2015 IEEE International Ultrasonics Symposium (IUS), IEEE, 2015.
  • 45. Y. Akyıldız, O. Öztürk, B. Simsar, Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3): 699-704, 2021.
  • 46. Y. Akyıldız, A. Akman, B. Horasan, R. Yamanoğlu, H. Aydın, Investigating the effect of quenching media and agitation conditions on the microstructure, hardness, and stress distribution of AISI 4140 steel by using FEM, 16. Mas International European Conference On Mathematics, Engineering, Natural and Medical Sciences, 156-163, 2022.
  • 47. Y. Akyıldız, Y. Arslan, H. Aydın, R. Yamanoğlu, Fe-Mn-C Çeli̇ği̇ni̇n Calphad Metodoloji̇si̇ ile Hesaplanan Si̇nterleme Sıcaklığının Mekani̇k Özelli̇kler Üzeri̇ne Etki̇si̇, 16. Mas International European Conference On Mathematics, Engineering, Natural & Medical Sciences, 164-174, 2022.
  • 48. R. Yamanoğlu, Y. Akyıldız, O. Öztürk, AlSi10Mg alaşımının toz metalurjisi ile üretimi: basınç destekli sinterleme ve calphad metodolojisi, International Symposium of Scientific Research and Innovative Studies, Bandırma Onyedi Eylül Üniversitesi, 2021.
  • 49. K. Yasuda, H. Honma, Z. Xu, Y. Asakura, S. Koda, Ultrasonic atomization amount for different frequencies. Japanese Journal of Applied Physics, 50(7S):07HE23, 2011.
  • 50. S.H. Alavi, S.P. Harimkar, Ultrasonic vibration-assisted laser atomization of stainless steel, Powder Technology, 321:89-93, 2017.
  • 51. M. Bielecki, J. Kluczyński, Ł. Słoboda, Manufacturing of metallic powders for AM market by ultrasonic atomization method, Proceedings of the Metal Additive Manufacturing Conference (MAMC 2021), Vienna, Austria, 2021.
  • 52. X.G. Li, Q. Zhu, S. Shu, J.Z Fan, S.M. Zhang, Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter, Powder Technology, 356:759-768, 2019.
  • 53. A.S. Jabur, Effect of powder metallurgy conditions on the properties of porous bronze, Powder Technology, 237:477-483, 2013.
  • 54. B. Verlee, T. Dormal, J. Lecomte-Beckers, Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing, Powder Metallurgy, 55(4): 260-267, 2012.
  • 55. A. Simchi, The role of particle size on the laser sintering of iron powder, Metallurgical Materials Transactions B, 35:937-948, 2004.
  • 56. G. Rai, E. Lavernia, N.J., Grant, Powder size and distribution in ultrasonic gas atomization, Journal of Metals, 37(8): 22-26, 1985.
  • 57. D. Božić, J.M. Stašić, V.M. Rajković, Microstructures and mechanical properties of ZA27-Al2O3 composites obtained by powder metallurgy process, Science of Sintering, 43(1):63-70, 2011.
  • 58. A. Strondl, O. Lyckfeldt, H. Brodin, U. Ackelid, Characterization and control of powder properties for additive manufacturing, Journal of Metals, 67:549-554, 2015.
  • 59. B. Błażej, M. Bielecki, W. Gulbiński, Ł. Słoboda, R. Rałowicz, J. Rozpendowski, Ultrasonic and other atomization methods comparison in metal powder production, Journal of Achievements in Materials and Manufacturing Engineer, 116:11-24, 2023.
  • 60. N. Bekoz, E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, Journal of Materials Processing Technology, 212(10):2109-2116, 2012.
  • 61. N. Bekoz, E. Oktay, High temperature mechanical properties of low alloy steel foams produced by powder metallurgy, Materials Design, 53:482-489, 2014.
  • 62. T. Yağcı, Ü. Cöcen, O. Çulha, A. Korkmaz, Bütünleşik Hesaplamalı Malzeme Mühendisliğinin Alüminyum Jant Üretiminde Kullanılabilirliği, 4.Ulusal Üniversite-Sanayi İş birliği Ar-Ge ve İnovasyon Kongresi, 269-277, 2021.
  • 63. K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, B. Nestler, Computational materials engineering: an introduction to microstructure evolution, Academic Press, 2010.
  • 64. T.J. Horn, O.L.A. Harrysson, Overview of current additive manufacturing technologies and selected applications, Science progress, 95(3):255-282, 2012.
  • 65. S. Negi, S. Dhiman, R.K. Sharma, Basics, applications and future of additive manufacturing technologies: A review, Journal of Manufacturing Technology Research, 5(1/2):75, 2013.
  • 66. B. Schoinochoritis, D. Chantzis, K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(1):96-117, 2017.
  • 67. J. Ma, L.C. Lim, Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts, Journal of the European Ceramic Society, 22(13): 2197-2208, 2002.
  • 68. W.H. Rhodes, Agglomerate and particle size effects on sintering yttria‐stabilized zirconia, Journal of the American Ceramic Society, 64(1):19-22, 1981.
  • 69. Y. Zhao, Y. Cui, Y. Hasebe, H. Bian, K. Yamanaka, K. Aoyagi, T. Hagisawa, A. Chiba, Controlling factors determining flowability of powders for additive manufacturing: A combined experimental and simulation study, Powder Technology, 393:482-493, 2021.
  • 70. N.B. Üllen, G. Karabulut, Gözenekli metalik malzeme üretiminde gözenek oranı ve küresellik arası ilişkinin incelenmesi,, 2nd International Eurasian Conference on Science, Engineering and Technology, 467-472, 2020.
  • 71. Z. Zhang, X.X. Yao, P. Ge, Phase-field-model-based analysis of the effects of powder particle on porosities and densities in selective laser sintering additive manufacturing, International Journal of Mechanical Sciences, 166:105230, 2020.
  • 72. G.E. Dieter, D. Bacon, Mechanical metallurgy, Vol. 3. McGraw-hill New York, 1976.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Review
Authors

Yağız Akyıldız 0000-0001-6012-9795

Serdar Sarı 0000-0003-0676-2850

Onur Furkan Kaya 0000-0002-3524-7383

Rıdvan Yamanoğlu 0000-0002-4661-8215

Early Pub Date August 31, 2023
Publication Date August 30, 2023
Submission Date May 1, 2023
Published in Issue Year 2023

Cite

APA Akyıldız, Y., Sarı, S., Kaya, O. F., Yamanoğlu, R. (2023). Ultrasonik atomizasyon: toz üretiminde alternatif bir yol. İmalat Teknolojileri Ve Uygulamaları, 4(2), 81-91. https://doi.org/10.52795/mateca.1290558
AMA Akyıldız Y, Sarı S, Kaya OF, Yamanoğlu R. Ultrasonik atomizasyon: toz üretiminde alternatif bir yol. MATECA. August 2023;4(2):81-91. doi:10.52795/mateca.1290558
Chicago Akyıldız, Yağız, Serdar Sarı, Onur Furkan Kaya, and Rıdvan Yamanoğlu. “Ultrasonik Atomizasyon: Toz üretiminde Alternatif Bir Yol”. İmalat Teknolojileri Ve Uygulamaları 4, no. 2 (August 2023): 81-91. https://doi.org/10.52795/mateca.1290558.
EndNote Akyıldız Y, Sarı S, Kaya OF, Yamanoğlu R (August 1, 2023) Ultrasonik atomizasyon: toz üretiminde alternatif bir yol. İmalat Teknolojileri ve Uygulamaları 4 2 81–91.
IEEE Y. Akyıldız, S. Sarı, O. F. Kaya, and R. Yamanoğlu, “Ultrasonik atomizasyon: toz üretiminde alternatif bir yol”, MATECA, vol. 4, no. 2, pp. 81–91, 2023, doi: 10.52795/mateca.1290558.
ISNAD Akyıldız, Yağız et al. “Ultrasonik Atomizasyon: Toz üretiminde Alternatif Bir Yol”. İmalat Teknolojileri ve Uygulamaları 4/2 (August 2023), 81-91. https://doi.org/10.52795/mateca.1290558.
JAMA Akyıldız Y, Sarı S, Kaya OF, Yamanoğlu R. Ultrasonik atomizasyon: toz üretiminde alternatif bir yol. MATECA. 2023;4:81–91.
MLA Akyıldız, Yağız et al. “Ultrasonik Atomizasyon: Toz üretiminde Alternatif Bir Yol”. İmalat Teknolojileri Ve Uygulamaları, vol. 4, no. 2, 2023, pp. 81-91, doi:10.52795/mateca.1290558.
Vancouver Akyıldız Y, Sarı S, Kaya OF, Yamanoğlu R. Ultrasonik atomizasyon: toz üretiminde alternatif bir yol. MATECA. 2023;4(2):81-9.