Research Article
BibTex RIS Cite

Design and Analysis of Active Cooled Brake Disc in Lattice Structure for Additive Manufacturing

Year 2023, , 120 - 128, 30.12.2023
https://doi.org/10.52795/mateca.1376655

Abstract

One of the most important parts in automotive, aviation, and rail systems are brake discs. Disc brake systems, which were first introduced in the 1950s, have undergone much advancement to reach the current technology, but they are still systems that continue to be developed. In frictional braking systems, heat is generated. When this temperature exceeds a certain level, the friction coefficient decreases due to the properties of the frictional element, which is the brake pads. This situation increases the stopping distance of the vehicle in long braking situations (such as downhill for heavy-tonnage vehicles or challenging tracks for sports cars) and reduces the service life of the braking and wheel group equipment. Therefore, the cooling structure of the brakes is crucial for both driving safety and vehicle security. This study aims to reduce the heating of the brake disc during prolonged use in sports cars and heavy-tonnage vehicles, improve the brake performance, achieve shorter stopping distances, and ensure driving and vehicle safety. In this study, a cage structure modeling approach was applied to enhance the cooling performance and reduce the weight of a sample brake disc designed for use in a sports car compared to traditional manufacturing methods. All design approaches were considered in light of the innovative possibilities and capabilities offered by additive manufacturing technologies. As a result of iterations, a model was obtained that would be manufactured using the selective laser melting method, resulting in a 20% lighter mass and 35% lower Von-Mises stresses. For the standard and cage structure discs subjected to equal heat loading, the standard disc surface had a temperature of 440 °C, while the optimized design resulted in a temperature of 213 °C.

References

  • 1. J.Y. Wong, Theory of ground vehicles, John Wiley & Sons, New Jersey, 2008.
  • 2. Y. Li, D.S. Crombez, Automotive braking system, Sunderland: World Journal of Modelling and Simulation, 31-32. 2015.
  • 3. G.W. Smolen, G. Martino, Lightweight brake rotor with a thin, heat resistant ceramic coating, Washington, DC: U.S. Patent and Trademark Office, 65-67, 1993.
  • 4. A.A. Adebisi, M.A. Maleque, M.M. Rahman, Metal matrix composite brake rotor: historical development and product life cycle analysis, International Journal of Automotive and Mechanical Engineering, 4: 471–480, 2011.
  • 5. T. Valvano, K. Lee, An analytical method to predict thermal distortion of a brake rotor, New York: SAE Technical, 566-571, 2000.
  • 6. F. Bagnoli, F. Dolce, M. Bernabei, Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, 16(1): 152-163, 2009.
  • 7. T. Wohler, Additive manufacturing and 3D printing-state of the industry annual worldwide progress report, Wohler’s Associates, Fort Collins, 27-28, 2013.
  • 8. A. Belhocine, M. Bouchetara, Thermomechanical behaviour of dry contacts in disc brake rotor with a grey cast iron composition, Transactions of the Indian Institute of Metals, 65: 231–238, 2012.
  • 9. A. Belhocine, M. Bouchetara, Thermo-mechanical coupled analysis of automotive brake disc, Int. J. Precis. Eng. Manuf., 14: 1591–1600, 2013.
  • 10. S.M. Kim, A study on thermal analysis in ventilated brake by FEM, J. Korean Soc. Mach. Tool Eng., 18: 544–549, 2009.
  • 11. S.P. Jung, T.W. Park, J.B. Chai, W.S. Chung, Thermo-mechanical finite element analysis of hot judder phenomenon of a ventilated disc brake system, International Journal of Precision Engineering and Manufacturing, 12:821–828, 2011.
  • 12. S.P. Jung, Y.G. Kim, T.W. Park, A Study on thermal characteristic analysis and shape optimization of a ventilated disc, International Journal of Precision Engineering and Manufacturing, 13, 57–63, 2012.
  • 13. V.M.M. Thilak, R. Krishnaraj, M. Sakthivel, K. Kanthavel, M.G. Deepan Marudachalam, R. Palani, Transient thermal and structural analysis of the rotor disc of disc brake, International Journal of Scientific and Engineering Research, 2(8): 1-4, 2011.
  • 14. I.C. Güleryüz, Z.H. Karadeniz, Transient thermal analyses of an integrated brake rotor and wheel hub for heavy duty vehicles, Proc. Inst. Mech. Eng. Part D J. Auto Eng., 236(5):971-986, 2022.
  • 15 S. Zhang, J. Yin, Y. Liu, N. Liu, Z. Sha, Y. Wang, B. Rolfe, Thermal–structural coupling analysis of brake friction pair based on the displacement gradient circulation method, Advances in Mechanical Engineering, 10, 1–13, 2018.
  • 16. C.H. Galindo-Lopez, M. Tirovic, Maximising heat dissipation from ventilated wheel-hub-mounted railway brake discs, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 227, 269–285, 2013.
  • 17. I. Roy, A. Bharatish, Optimization of ventilated brake disc rotor geometry for enhanced structural characteristics, Journal of Measurements in Engineering, 8(3): 98–106, 2020.
  • 18. S. Topouris, M. Tirovic, Design synthesis and structural optimization of a lightweight, monobloc cast iron brake disc with fingered hub, Engineering Optimization, 51, 1710–1726, 2019.
  • 19. S. Park, K. Lee, S. Kim, J. Kim, Brake-disc holes and slit shape design to improve heat dissipation performance and structural stability, Appl. Sci., 12, 1171, 2022.
  • 20. S.R. Abhang, D.P. Bhaskar, Design and analysis of disc brake, International Journal of Engineering Trends and Technology, 8(4): 165-167, 2014.
  • 21. F. Bagnoli, F. Dolce, M. Bernabei, Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, 16(1): 152-163, 2009.
  • 22. A.E. Sisson, Thermal analysis of vented brake rotors, Society of Automobile Engineers Transactions, 87: 1685-1694, 1978.
  • 23. M.D. Hudson, R.L. Ruhl, Ventilated brake rotor air flow investigation, Society of Automobile Engineers Transactions, 106, 1862-1871, 1997.
  • 24. C.B. Saiz, T. Ingrassia, V. Nigrelli, V. Ricotta, Thermal stress analysis of different full and ventilated disc brakes, Frattura ed Integrità Strutturale, 9(34): 608–621, 2015.

Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi

Year 2023, , 120 - 128, 30.12.2023
https://doi.org/10.52795/mateca.1376655

Abstract

Otomotiv, havacılık ve raylı sistemlerde şüphesiz en önemli parçalarından biri fren diskleridir. İlk olarak 1950’li yıllarda kullanılmaya başlanılan diskli fren sistemleri günümüz teknolojisine gelene kadar birçok gelişme gösterse de hala geliştirilmesi devam eden sistemlerdir. Sürtünmeli fren sistemlerinde ısı açığa çıkar. Bu sıcaklık belli bir düzeyin üzerine çıktığında sürtünme elemanı olan balataların özellikleri sebebi ile sürtünme katsayıları azalır. Uzun frenleme (ağır tonajlı araçlarda yokuş aşağı ya da spor araçlarında zorlu parkurlarda) taşıtın durma mesafesini arttırmakta, fren ve teker grubu ekipmanlarının kullanım ömürlerinin azalmasına sebep olmaktadır. Bu sebepten hem sürüş emniyeti hem de taşıt güvenliği açısından fren soğutma yapısı önem arz etmektedir. Bu çalışmada, bir spor arabada kullanılmak üzere geleneksel imalat metotlarına göre tasarlanmış örnek bir fren diskinin soğutma performansının arttırılması ve ağırlık olarak hafifletilmesi için kafes yapı modelleme yaklaşımı uygulanmıştır. Tüm tasarım yaklaşımları, eklemeli imalat teknolojilerinin sunduğu yenilikçi imkân ve kabiliyetler göz önünde bulundurularak ele alınmıştır. İterasyonlar sonucu elde edilen model eklemeli imalat metotlarından seçici lazer ergitme yöntemi ile imal edilecek şekilde ele alındığında kütlece %20 daha hafif, Von-mises gerilmeleri bakımından da %35 daha düşük gerilmeye sahip bir model ortaya çıkmıştır. Ele alınan standart ve kafes yapıda disklere eşit ısı yüklemesinde standart disk yüzeyinde 440 ℃ sıcaklık bulunurken yapılan optimum tasarımda 213 ℃ sıcaklık belirlenmiştir.

Supporting Institution

Bu çalışma, Gazi Üniversitesi Fen Bilimleri Enstitüsü İmalat Mühendisliği 2023 yılı 'KAFES YAPIDA ETKİN SOĞUTMALI FREN DİSKİNİN EKLEMELİ İMALAT İÇİN TASARIMI, ANALİZİ VE ÜRETİMİ' adlı tez çalışması kapsamında gerçekleştirilmiştir.

References

  • 1. J.Y. Wong, Theory of ground vehicles, John Wiley & Sons, New Jersey, 2008.
  • 2. Y. Li, D.S. Crombez, Automotive braking system, Sunderland: World Journal of Modelling and Simulation, 31-32. 2015.
  • 3. G.W. Smolen, G. Martino, Lightweight brake rotor with a thin, heat resistant ceramic coating, Washington, DC: U.S. Patent and Trademark Office, 65-67, 1993.
  • 4. A.A. Adebisi, M.A. Maleque, M.M. Rahman, Metal matrix composite brake rotor: historical development and product life cycle analysis, International Journal of Automotive and Mechanical Engineering, 4: 471–480, 2011.
  • 5. T. Valvano, K. Lee, An analytical method to predict thermal distortion of a brake rotor, New York: SAE Technical, 566-571, 2000.
  • 6. F. Bagnoli, F. Dolce, M. Bernabei, Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, 16(1): 152-163, 2009.
  • 7. T. Wohler, Additive manufacturing and 3D printing-state of the industry annual worldwide progress report, Wohler’s Associates, Fort Collins, 27-28, 2013.
  • 8. A. Belhocine, M. Bouchetara, Thermomechanical behaviour of dry contacts in disc brake rotor with a grey cast iron composition, Transactions of the Indian Institute of Metals, 65: 231–238, 2012.
  • 9. A. Belhocine, M. Bouchetara, Thermo-mechanical coupled analysis of automotive brake disc, Int. J. Precis. Eng. Manuf., 14: 1591–1600, 2013.
  • 10. S.M. Kim, A study on thermal analysis in ventilated brake by FEM, J. Korean Soc. Mach. Tool Eng., 18: 544–549, 2009.
  • 11. S.P. Jung, T.W. Park, J.B. Chai, W.S. Chung, Thermo-mechanical finite element analysis of hot judder phenomenon of a ventilated disc brake system, International Journal of Precision Engineering and Manufacturing, 12:821–828, 2011.
  • 12. S.P. Jung, Y.G. Kim, T.W. Park, A Study on thermal characteristic analysis and shape optimization of a ventilated disc, International Journal of Precision Engineering and Manufacturing, 13, 57–63, 2012.
  • 13. V.M.M. Thilak, R. Krishnaraj, M. Sakthivel, K. Kanthavel, M.G. Deepan Marudachalam, R. Palani, Transient thermal and structural analysis of the rotor disc of disc brake, International Journal of Scientific and Engineering Research, 2(8): 1-4, 2011.
  • 14. I.C. Güleryüz, Z.H. Karadeniz, Transient thermal analyses of an integrated brake rotor and wheel hub for heavy duty vehicles, Proc. Inst. Mech. Eng. Part D J. Auto Eng., 236(5):971-986, 2022.
  • 15 S. Zhang, J. Yin, Y. Liu, N. Liu, Z. Sha, Y. Wang, B. Rolfe, Thermal–structural coupling analysis of brake friction pair based on the displacement gradient circulation method, Advances in Mechanical Engineering, 10, 1–13, 2018.
  • 16. C.H. Galindo-Lopez, M. Tirovic, Maximising heat dissipation from ventilated wheel-hub-mounted railway brake discs, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 227, 269–285, 2013.
  • 17. I. Roy, A. Bharatish, Optimization of ventilated brake disc rotor geometry for enhanced structural characteristics, Journal of Measurements in Engineering, 8(3): 98–106, 2020.
  • 18. S. Topouris, M. Tirovic, Design synthesis and structural optimization of a lightweight, monobloc cast iron brake disc with fingered hub, Engineering Optimization, 51, 1710–1726, 2019.
  • 19. S. Park, K. Lee, S. Kim, J. Kim, Brake-disc holes and slit shape design to improve heat dissipation performance and structural stability, Appl. Sci., 12, 1171, 2022.
  • 20. S.R. Abhang, D.P. Bhaskar, Design and analysis of disc brake, International Journal of Engineering Trends and Technology, 8(4): 165-167, 2014.
  • 21. F. Bagnoli, F. Dolce, M. Bernabei, Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, 16(1): 152-163, 2009.
  • 22. A.E. Sisson, Thermal analysis of vented brake rotors, Society of Automobile Engineers Transactions, 87: 1685-1694, 1978.
  • 23. M.D. Hudson, R.L. Ruhl, Ventilated brake rotor air flow investigation, Society of Automobile Engineers Transactions, 106, 1862-1871, 1997.
  • 24. C.B. Saiz, T. Ingrassia, V. Nigrelli, V. Ricotta, Thermal stress analysis of different full and ventilated disc brakes, Frattura ed Integrità Strutturale, 9(34): 608–621, 2015.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Research Articles
Authors

Abdülcelil Bayar 0000-0002-5759-4773

Ümit Aytar 0009-0003-7636-4898

Abdullah Duran 0000-0001-6618-7275

Early Pub Date December 30, 2023
Publication Date December 30, 2023
Submission Date October 17, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023

Cite

APA Bayar, A., Aytar, Ü., & Duran, A. (2023). Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi. İmalat Teknolojileri Ve Uygulamaları, 4(3), 120-128. https://doi.org/10.52795/mateca.1376655
AMA Bayar A, Aytar Ü, Duran A. Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi. MATECA. December 2023;4(3):120-128. doi:10.52795/mateca.1376655
Chicago Bayar, Abdülcelil, Ümit Aytar, and Abdullah Duran. “Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı Ve Analizi”. İmalat Teknolojileri Ve Uygulamaları 4, no. 3 (December 2023): 120-28. https://doi.org/10.52795/mateca.1376655.
EndNote Bayar A, Aytar Ü, Duran A (December 1, 2023) Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi. İmalat Teknolojileri ve Uygulamaları 4 3 120–128.
IEEE A. Bayar, Ü. Aytar, and A. Duran, “Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi”, MATECA, vol. 4, no. 3, pp. 120–128, 2023, doi: 10.52795/mateca.1376655.
ISNAD Bayar, Abdülcelil et al. “Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı Ve Analizi”. İmalat Teknolojileri ve Uygulamaları 4/3 (December 2023), 120-128. https://doi.org/10.52795/mateca.1376655.
JAMA Bayar A, Aytar Ü, Duran A. Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi. MATECA. 2023;4:120–128.
MLA Bayar, Abdülcelil et al. “Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı Ve Analizi”. İmalat Teknolojileri Ve Uygulamaları, vol. 4, no. 3, 2023, pp. 120-8, doi:10.52795/mateca.1376655.
Vancouver Bayar A, Aytar Ü, Duran A. Kafes Yapıda Etkin Soğutmalı Fren Diskinin Eklemeli İmalat için Tasarımı ve Analizi. MATECA. 2023;4(3):120-8.