Research Article
BibTex RIS Cite

CVD Kaplamalı RCMX Karbür Takım ile Tren Tekerleği Çeliğinin Tornalanmasında İşlenebilirlik Özelliklerinin Ölçülmesi ve Değerlendirilmesi

Year 2022, Volume: 3 Issue: 1, 1 - 13, 29.04.2022
https://doi.org/10.52795/mateca.1058771

Abstract

Avrupa demir yolu hatlarında kullanılmakta olan EN13262 standardına göre üretilmiş ER7 kalite çelikleri Kardemir A.Ş Demir Yolu Tekeri Üretim Tesislerinde üretilebilmektedir. Pres ve haddeleme ile üretilen bu tekerlekler üserim prosesinin ardından nihai ölçülerine getirilmek üzere talaşlı imalat sürecine girmektedir. Bu çalışmada MT-TiCN+Al2O3 CVD coated-RCMX 1606M0 K15 kalite takım kullanılarak kuru test koşullarında ER7 tekerlek malzemesinin 1mm kesme derinliği değeri ile tornalanması sırasında ilerleme hızı (FR) ve kesme hızı (CS) parametrelerinin yüzey pürüzlülüğü (SR), güç harcaması (PC) ve kesme sıcaklığı (CT) üzerindeki etkileri araştırılmıştır. Giriş parametrelerinin sonuçlar üzerindeki etki oranlarının tespitinde Analysis of Varyans (ANOVA) yöntemi kullanılmıştır. Ayrıca Response Surface Metodu kullanılarak tahmin denklemleri elde edilmiştir. Bu çalışmanın sonucunda yüzey pürüzlülüğü için etkili parametre %57.158 ile ilerleme hızı olurken, güç harcaması ve kesme sıcaklığı için etkili parametrenin kesme hızı olduğu tespit edilmiş olup sırası ile %58.071 ve %64.797 olarak bulunmuştur.

References

  • [1] A. Mazzù, A. Ghidini, L. Provezza, C. Petrogalli, and M. Faccoli, “Study of the damage induced by thermomechanical load in ER7 tread braked railway wheels,” Procedia Struct. Integr., vol. 18, pp. 170–182, 2019, doi: https://doi.org/10.1016/j.prostr.2019.08.151.
  • [2] Y. Z. Chen, C. G. He, X. J. Zhao, L. B. Shi, Q. Y. Liu, and W. J. Wang, “The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel,” Eng. Fail. Anal., vol. 93, pp. 183–199, 2018, doi: https://doi.org/10.1016/j.engfailanal.2018.07.006.
  • [3] V. Gupta, G. Narayanamurthy, and P. Acharya, “Can lean lead to green? Assessment of radial tyre manufacturing processes using system dynamics modelling,” Computers and Operations Research, vol. 89. pp. 284–306, 2018, doi: 10.1016/j.cor.2017.03.015.
  • [4] Y. Touggui, A. Uysal, U. Emiroglu, S. Belhadi, and M. Temmar, “Evaluation of MQL performances using various nanofluids in turning of AISI 304 stainless steel,” Int. J. Adv. Manuf. Technol., 2021, doi: 10.1007/s00170-021-07448-x.
  • [5] T. M. Duc, T. T. Long, and P. Q. Dong, “Effect of the alumina nanofluid concentration on minimum quantity lubrication hard machining for sustainable production,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 17, pp. 5977–5988, 2019, doi: 10.1177/0954406219861992.
  • [6] M. Günay, M. E. Korkmaz, and N. Yaşar, “Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments,” J. Manuf. Process., vol. 56, pp. 678–687, Aug. 2020, doi: 10.1016/j.jmapro.2020.05.031.
  • [7] H. Yurtkuran, M. E. Korkmaz, and M. Günay, “Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert,” Gazi Univ. J. Sci., vol. 29 (4), no. 4, pp. 987–995, 2016.
  • [8] F. Klocke and G. Eisenblätter, “Dry cutting - State of research,” VDI Berichte, vol. 46, no. 1399, pp. 159–188, 1998.
  • [9] N. Canter, “The possibilities and limitations of dry machining,” Tribol. Lubr. Technol., vol. 59, Nov. 2003.
  • [10] B. Ozcelik, E. Kuram, E. Demirbas, and E. Şik, “Effects of vegetable-based cutting fluids on the wear in drilling,” Sadhana - Acad. Proc. Eng. Sci., vol. 38, no. 4, pp. 687–706, 2013, doi: 10.1007/s12046-013-0179-4.
  • [11] M. Kumar Gupta, M. Boy, M. Erdi Korkmaz, N. Yaşar, M. Günay, and G. M. Krolczyk, “Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel,” Measurement, vol. 187, p. 110353, 2022, doi: https://doi.org/10.1016/j.measurement.2021.110353.
  • [12] N. S. Ross et al., “Impact of hybrid cooling approach on milling and surface morphological characteristics of Nimonic 80A alloy,” J. Manuf. Process., vol. 73, pp. 428–439, 2022, doi: https://doi.org/10.1016/j.jmapro.2021.11.018.
  • [13] M. E. Korkmaz, M. K. Gupta, M. Boy, N. Yaşar, G. M. Krolczyk, and M. Günay, “Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A,” J. Manuf. Process., vol. 69, pp. 112–124, 2021, doi: https://doi.org/10.1016/j.jmapro.2021.07.039.
  • [14] T. Kıvak, M. Sarıkaya, Ç. V. Yıldırım, and Ş. Şirin, “Study on turning performance of PVD TiN coated Al2O3+TiCN ceramic tool under cutting fluid reinforced by nano-sized solid particles,” J. Manuf. Process., vol. 56, pp. 522–539, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.05.017.
  • [15] D. Y. Pimenov et al., “Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect,” J. Mater. Res. Technol., vol. 11, pp. 719–753, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.01.031.
  • [16] M. Günay and M. E. Korkmaz, “Optimization of honing parameters for renewal of cylinder liners,” Gazi Univ. J. Sci., vol. 30, no. 1, 2017.
  • [17] S. Dixit et al., “Increased drought tolerance and wider adaptability of qDTY12.1 conferred by its interaction with qDTY2.3 and qDTY3.2,” Mol. Breed., vol. 30, Dec. 2012, doi: 10.1007/s11032-012-9760-5.
  • [18] M. Sarıkaya, V. Yılmaz, and A. Güllü, “Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy,” J. Clean. Prod., vol. 133, pp. 172–181, 2016, doi: 10.1016/j.jclepro.2016.05.122.
  • [19] V. S. Sharma, M. Dogra, and N. M. Suri, “Cooling techniques for improved productivity in turning,” Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 435–453, 2009, doi: https://doi.org/10.1016/j.ijmachtools.2008.12.010.
  • [20] J. Haider and M. S. J. Hashmi, “8.02 - Health and Environmental Impacts in Metal Machining Processes,” S. Hashmi, G. F. Batalha, C. J. Van Tyne, and B. B. T.-C. M. P. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 7–33.
  • [21] M. A. Erden, N. Yaşar, M. E. Korkmaz, B. Ayvacı, K. Nimel Sworna Ross, and M. Mia, “Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method,” Int. J. Adv. Manuf. Technol., vol. 114, no. 9–10, pp. 2811–2827, 2021, doi: 10.1007/s00170-021-07052-z.

Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool

Year 2022, Volume: 3 Issue: 1, 1 - 13, 29.04.2022
https://doi.org/10.52795/mateca.1058771

Abstract

ER7 quality steels produced according to EN13262 standard used in European railway lines can be produced at Kardemir A.Ş Railway Wheel Production Facilities. These wheels, which are produced by pressing and rolling, are included in the machining process to be brought to their final dimensions after the production process. In this experimental study, the effects of cutting speed (CS) and feed rate (FR) on surface roughness (SR), power consumption (PC) and cutting temperature (CT) were investigated during turning of ER7 wheel material with 1mm depth of cut value under dry test conditions using MT-TiCN+Al2O3 CVD coated-RCMX 1606M0 K15 quality tool. Analysis of Variance (ANOVA) method was used to determine the effect rates of the input parameters on the results. In addition, estimation equations were obtained using the Response Surface Method. As a result of this study, the effective parameter for SR is FR with 57.158%, while the effective parameter for PC and CT is found to be CS, and it is found to be 58.071% and 64.977%, respectively.

References

  • [1] A. Mazzù, A. Ghidini, L. Provezza, C. Petrogalli, and M. Faccoli, “Study of the damage induced by thermomechanical load in ER7 tread braked railway wheels,” Procedia Struct. Integr., vol. 18, pp. 170–182, 2019, doi: https://doi.org/10.1016/j.prostr.2019.08.151.
  • [2] Y. Z. Chen, C. G. He, X. J. Zhao, L. B. Shi, Q. Y. Liu, and W. J. Wang, “The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel,” Eng. Fail. Anal., vol. 93, pp. 183–199, 2018, doi: https://doi.org/10.1016/j.engfailanal.2018.07.006.
  • [3] V. Gupta, G. Narayanamurthy, and P. Acharya, “Can lean lead to green? Assessment of radial tyre manufacturing processes using system dynamics modelling,” Computers and Operations Research, vol. 89. pp. 284–306, 2018, doi: 10.1016/j.cor.2017.03.015.
  • [4] Y. Touggui, A. Uysal, U. Emiroglu, S. Belhadi, and M. Temmar, “Evaluation of MQL performances using various nanofluids in turning of AISI 304 stainless steel,” Int. J. Adv. Manuf. Technol., 2021, doi: 10.1007/s00170-021-07448-x.
  • [5] T. M. Duc, T. T. Long, and P. Q. Dong, “Effect of the alumina nanofluid concentration on minimum quantity lubrication hard machining for sustainable production,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 17, pp. 5977–5988, 2019, doi: 10.1177/0954406219861992.
  • [6] M. Günay, M. E. Korkmaz, and N. Yaşar, “Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments,” J. Manuf. Process., vol. 56, pp. 678–687, Aug. 2020, doi: 10.1016/j.jmapro.2020.05.031.
  • [7] H. Yurtkuran, M. E. Korkmaz, and M. Günay, “Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert,” Gazi Univ. J. Sci., vol. 29 (4), no. 4, pp. 987–995, 2016.
  • [8] F. Klocke and G. Eisenblätter, “Dry cutting - State of research,” VDI Berichte, vol. 46, no. 1399, pp. 159–188, 1998.
  • [9] N. Canter, “The possibilities and limitations of dry machining,” Tribol. Lubr. Technol., vol. 59, Nov. 2003.
  • [10] B. Ozcelik, E. Kuram, E. Demirbas, and E. Şik, “Effects of vegetable-based cutting fluids on the wear in drilling,” Sadhana - Acad. Proc. Eng. Sci., vol. 38, no. 4, pp. 687–706, 2013, doi: 10.1007/s12046-013-0179-4.
  • [11] M. Kumar Gupta, M. Boy, M. Erdi Korkmaz, N. Yaşar, M. Günay, and G. M. Krolczyk, “Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel,” Measurement, vol. 187, p. 110353, 2022, doi: https://doi.org/10.1016/j.measurement.2021.110353.
  • [12] N. S. Ross et al., “Impact of hybrid cooling approach on milling and surface morphological characteristics of Nimonic 80A alloy,” J. Manuf. Process., vol. 73, pp. 428–439, 2022, doi: https://doi.org/10.1016/j.jmapro.2021.11.018.
  • [13] M. E. Korkmaz, M. K. Gupta, M. Boy, N. Yaşar, G. M. Krolczyk, and M. Günay, “Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A,” J. Manuf. Process., vol. 69, pp. 112–124, 2021, doi: https://doi.org/10.1016/j.jmapro.2021.07.039.
  • [14] T. Kıvak, M. Sarıkaya, Ç. V. Yıldırım, and Ş. Şirin, “Study on turning performance of PVD TiN coated Al2O3+TiCN ceramic tool under cutting fluid reinforced by nano-sized solid particles,” J. Manuf. Process., vol. 56, pp. 522–539, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.05.017.
  • [15] D. Y. Pimenov et al., “Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect,” J. Mater. Res. Technol., vol. 11, pp. 719–753, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.01.031.
  • [16] M. Günay and M. E. Korkmaz, “Optimization of honing parameters for renewal of cylinder liners,” Gazi Univ. J. Sci., vol. 30, no. 1, 2017.
  • [17] S. Dixit et al., “Increased drought tolerance and wider adaptability of qDTY12.1 conferred by its interaction with qDTY2.3 and qDTY3.2,” Mol. Breed., vol. 30, Dec. 2012, doi: 10.1007/s11032-012-9760-5.
  • [18] M. Sarıkaya, V. Yılmaz, and A. Güllü, “Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy,” J. Clean. Prod., vol. 133, pp. 172–181, 2016, doi: 10.1016/j.jclepro.2016.05.122.
  • [19] V. S. Sharma, M. Dogra, and N. M. Suri, “Cooling techniques for improved productivity in turning,” Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 435–453, 2009, doi: https://doi.org/10.1016/j.ijmachtools.2008.12.010.
  • [20] J. Haider and M. S. J. Hashmi, “8.02 - Health and Environmental Impacts in Metal Machining Processes,” S. Hashmi, G. F. Batalha, C. J. Van Tyne, and B. B. T.-C. M. P. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 7–33.
  • [21] M. A. Erden, N. Yaşar, M. E. Korkmaz, B. Ayvacı, K. Nimel Sworna Ross, and M. Mia, “Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method,” Int. J. Adv. Manuf. Technol., vol. 114, no. 9–10, pp. 2811–2827, 2021, doi: 10.1007/s00170-021-07052-z.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Recep Demirsöz 0000-0003-0674-4572

Mehmet Boy 0000-0003-2471-8001

Early Pub Date April 22, 2022
Publication Date April 29, 2022
Submission Date January 17, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Demirsöz, R., & Boy, M. (2022). Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool. İmalat Teknolojileri Ve Uygulamaları, 3(1), 1-13. https://doi.org/10.52795/mateca.1058771
AMA Demirsöz R, Boy M. Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool. MATECA. April 2022;3(1):1-13. doi:10.52795/mateca.1058771
Chicago Demirsöz, Recep, and Mehmet Boy. “Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool”. İmalat Teknolojileri Ve Uygulamaları 3, no. 1 (April 2022): 1-13. https://doi.org/10.52795/mateca.1058771.
EndNote Demirsöz R, Boy M (April 1, 2022) Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool. İmalat Teknolojileri ve Uygulamaları 3 1 1–13.
IEEE R. Demirsöz and M. Boy, “Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool”, MATECA, vol. 3, no. 1, pp. 1–13, 2022, doi: 10.52795/mateca.1058771.
ISNAD Demirsöz, Recep - Boy, Mehmet. “Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool”. İmalat Teknolojileri ve Uygulamaları 3/1 (April 2022), 1-13. https://doi.org/10.52795/mateca.1058771.
JAMA Demirsöz R, Boy M. Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool. MATECA. 2022;3:1–13.
MLA Demirsöz, Recep and Mehmet Boy. “Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool”. İmalat Teknolojileri Ve Uygulamaları, vol. 3, no. 1, 2022, pp. 1-13, doi:10.52795/mateca.1058771.
Vancouver Demirsöz R, Boy M. Measurement and Evaluation of Machinability Characteristics in Turning of Train Wheel Steel via CVD Coated-RCMX Carbide Tool. MATECA. 2022;3(1):1-13.