Review
BibTex RIS Cite

A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review

Year 2022, Volume: 3 Issue: 1, 14 - 32, 29.04.2022
https://doi.org/10.52795/mateca.1080941

Abstract

This review article offers consolidated knowledge on the subject of several traditional and non-traditional procedures that are taking place throughout the years to form shape memory alloys (SMAs). At the primary part of the review, the usage of several shape memory alloys was shown. The dialogue then continued towards numerous traditional techniques of operating followed by the obstacles in the running of SMAs utilizing traditional techniques of operating. Moreover, numerous non-traditional processes of operations such WJM (Water jet Machining), cryogenic, WEDM (Wire Electro Discharge Machining), EDM (Electro Discharge Machining), and electrochemical machining explored. As well, Numerous of outcomes reactions that may occur during the operation procedures have been emphasized such as material removal rate (MRR), rate of tool wear, surface roughness (SR), the surface integrity. A consolidated records of various academics and their findings on this issue has been evaluated. After all, the article has been concluded by suggesting a variety of key points seen throughout the review process.

References

  • [1] D. S. T W Duerig, K N Melton, “Engineering Aspects of Shape Memory Alloys,” in Butterworth-Heinemann, 1990, pp. 5–35.
  • [2] C. M. Wayman, “SOME APPLICATIONS OF SHAPE-MEMORY ALLOYS.,” J. Met., vol. 32, no. 6, pp. 129–137, Dec. 1980, doi: 10.1007/bf03354492.
  • [3] L. Kulinsky and M. J. Madou, “9 - BioMEMs for drug delivery applications A2 - Bhansali, Shekhar,” Woodhead Publ. Ser. Biomater., pp. 218–268, 2012.
  • [4] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 221, no. 4, pp. 535–552, 2007, doi: 10.1243/09544100JAERO211.
  • [5] “File:Nitinol Austenite and martensite small.jpg - Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/File:Nitinol_Austenite_and_martensite_small.jpg. [Accessed: 26-Nov-2021].
  • [6] I. N. QADER, M. KOK, F. Dağdelen, and Y. AYDOĞDU, “‘A review of smart materials: researches and applications,’” El-Cezeri Fen ve Mühendislik Derg., Sep. 2019, doi: 10.31202/ecjse.562177.
  • [7] P. S. Lobo, J. Almeida, and L. Guerreiro, “Shape Memory Alloys Behaviour: A Review,” Procedia Eng., vol. 114, pp. 776–783, Jan. 2015, doi: 10.1016/J.PROENG.2015.08.025.
  • [8] E. O. Ezugwu, J. Bonney, and Y. Yamane, “An overview of the machinability of aeroengine alloys,” J. Mater. Process. Technol., vol. 134, no. 2, pp. 233–253, Mar. 2003, doi: 10.1016/S0924-0136(02)01042-7.
  • [9] T. KIVAK, K. HABALI, and U. ŞEKER, “The Effect of Cutting Paramaters on The Hole Quality and Tool Wear During The Drilling of Inconel 718,” Gazi Univ. J. Sci., vol. 25, no. 2, pp. 533–540, Apr. 2012.
  • [10] D. Manolakos and A. P. Markopoulos, “A review on the machining of Nickel-Titanium shape memory alloys,” Rev. Adv. Mater. Sci. 42(1), pp. 28-35, Jul. 2015.
  • [11] K. Weinert, V. Petzoldt, and D. Kötter, “Turning and Drilling of NiTi Shape Memory Alloys,” CIRP Ann., vol. 53, no. 1, pp. 65–68, Jan. 2004, doi: 10.1016/S0007-8506(07)60646-5.
  • [12] K. Weinert and V. Petzoldt, “Machining of NiTi based shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1-2 SPEC. ISS., pp. 180–184, Jul. 2004, doi: 10.1016/J.MSEA.2003.10.344.
  • [13] E. Ezugwu, Á. R. Machado, I. Pashby, and J. Wallbank, “The effect of high-pressure coolant supply when machining a heat-resistant nickel-based superalloy,” undefined, 1991.
  • [14] F. Pusavec, H. Hamdi, J. Kopac, and I. S. Jawahir, “Surface integrity in cryogenic machining of nickel based alloy—Inconel 718,” J. Mater. Process. Technol., vol. 211, no. 4, pp. 773–783, Apr. 2011, doi: 10.1016/J.JMATPROTEC.2010.12.013.
  • [15] N. Zlatin and J. Christopher, “No Title,” in Influence of Metallurgy on Machinability, American Society for Metals, 1975, pp. 296–307.
  • [16] M. Rahman, W. K. H. Seah, and T. T. Teo, “The machinability of inconel 718,” J. Mater. Process. Technol., vol. 63, no. 1–3, pp. 199–204, Jan. 1997, doi: 10.1016/S0924-0136(96)02624-6.
  • [17] R. Arunachalam and M. A. Mannan, “MACHINABILITY OF NICKEL-BASED HIGH TEMPERATURE ALLOYS,” Mach. Sci. Technol., vol. 4, no. 1, pp. 127–168, 2000, doi: 10.1080/10940340008945703.
  • [18] Y. Guo, A. Klink, C. Fu, and J. Snyder, “Machinability and surface integrity of Nitinol shape memory alloy,” CIRP Ann., vol. 62, no. 1, pp. 83–86, Jan. 2013, doi: 10.1016/J.CIRP.2013.03.004.
  • [19] E. O. E. and A. R. Machado, “Face Milling of Aerospace Materials,” in Face Milling of Aerospace Materials, 1998, pp. 3.1-3.11.
  • [20] E. O. Ezugwu and I. R. Pashby, “High speed milling of nickel-based superalloys,” J. Mater. Process. Technol., vol. 33, no. 4, pp. 429–437, Sep. 1992, doi: 10.1016/0924-0136(92)90277-Y.
  • [21] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Modelling of cutting force in end milling Inconel 718,” J. Mater. Process. Technol., vol. 58, no. 1, pp. 100–108, Mar. 1996, doi: 10.1016/0924-0136(95)02113-2.
  • [22] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Optimization of surface finish in end milling Inconel 718,” J. Mater. Process. Technol., vol. 56, no. 1–4, pp. 54–65, Jan. 1996, doi: 10.1016/0924-0136(95)01820-4.
  • [23] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Tool-life testing in the end milling of Inconel 718,” J. Mater. Process. Technol., vol. 55, no. 3–4, pp. 321–330, Dec. 1995, doi: 10.1016/0924-0136(95)02035-7.
  • [24] K. Weinert and V. Petzoldt, “Machining NiTi micro-parts by micro-milling,” Mater. Sci. Eng. A, vol. Complete, no. 481–482, pp. 672–675, May 2008, doi: 10.1016/J.MSEA.2006.10.220.
  • [25] R. Piquard, A. D’Acunto, P. Laheurte, and D. Dudzinski, “Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation,” Precis. Eng., vol. 38, no. 2, pp. 356–364, Apr. 2014, doi: 10.1016/J.PRECISIONENG.2013.11.006.
  • [26] “Machining of NiTi based shape memory alloys | Semantic Scholar.” [Online]. Available: https://www.semanticscholar.org/paper/Machining-of-NiTi-based-shape-memory-alloys-Weinert-Petzoldt/77cf5abbcf35edcd6fa9a9a982d5959eedb1a415. [Accessed: 29-Nov-2021].
  • [27] H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Process. Tech., vol. 3, no. 105, pp. 327–332, 2000.
  • [28] M. Manjaiah, S. Narendranath, and S. Basavarajappa, “Review on non-conventional machining of shape memory alloys,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 1, pp. 12–21, Jan. 2014, doi: 10.1016/S1003-6326(14)63022-3.
  • [29] S. Daneshmand, E. Farahmand Kahrizi, E. Abedi, and M. Mir Abdolhosseini, “Influence of machining parameters on electro discharge machining of NiTi shape memory alloys,” Artic. Int. J. Electrochem. Sci., vol. 8, pp. 3095–3104, 2013.
  • [30] W. Theisen and A. Schuermann, “Electro discharge machining of nickel–titanium shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1–2, pp. 200–204, Jul. 2004, doi: 10.1016/J.MSEA.2003.09.115.
  • [31] S. Zinelis, “Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM),” Dent. Mater., vol. 23, no. 5, pp. 601–607, May 2007, doi: 10.1016/J.DENTAL.2006.03.021.
  • [32] A. Gangele and A. Mishra, “Surface Roughness Optimization During Machining Of Niti Shape Memory Alloy By EDM Through Taguchi’s Technique,” Mater. Today Proc., vol. 29, pp. 343–347, Jan. 2020, doi: 10.1016/J.MATPR.2020.07.287.
  • [33] V. S. Jatti, “Multi-characteristics optimization in EDM of NiTi alloy, NiCu alloy and BeCu alloy using Taguchi’s approach and utility concept,” Alexandria Eng. J., vol. 57, no. 4, pp. 2807–2817, Dec. 2018, doi: 10.1016/J.AEJ.2017.11.004.
  • [34] M. H. Abidi, A. M. Al-Ahmari, U. Umer, and M. S. Rasheed, “Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II,” Measurement, vol. 125, pp. 336–349, Sep. 2018, doi: 10.1016/J.MEASUREMENT.2018.04.096.
  • [35] S. Daneshmand, V. Monfared, and A. A. Lotfi Neyestanak, “Effect of Tool Rotational and Al2O3 Powder in Electro Discharge Machining Characteristics of NiTi-60 Shape Memory Alloy,” Silicon 2016 92, vol. 9, no. 2, pp. 273–283, Apr. 2016, doi: 10.1007/S12633-016-9412-1.
  • [36] C. H. Fu, J. F. Liu, Y. B. Guo, and Q. Z. Zhao, “A Comparative Study on White Layer Properties by Laser Cutting vs. Electrical Discharge Machining of Nitinol Shape Memory Alloy,” Procedia CIRP, vol. 42, pp. 246–251, Jan. 2016, doi: 10.1016/J.PROCIR.2016.02.280.
  • [37] S. F. Hsieh, S. L. Chen, H. C. Lin, M. H. Lin, and S. Y. Chiou, “The machining characteristics and shape recovery ability of Ti–Ni–X (X=Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining,” Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 509–514, May 2009, doi: 10.1016/J.IJMACHTOOLS.2008.12.013.
  • [38] R. Chaudhari, J. J. Vora, V. Patel, L. N. López De Lacalle, and D. M. Parikh, “materials Surface Analysis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys,” Materials (Basel)., vol. 530, no. 3, pp. 2–13, 2020, doi: 10.3390/ma13030530.
  • [39] N. Praveen, U. S. Mallik, A. G. Shivasiddaramaiah, and G. N. Narendra Reddy, “A study on material removal rate of Cu-Al-Mn shape memory alloys in WEDM,” undefined, vol. 46, pp. 2770–2774, 2021, doi: 10.1016/J.MATPR.2021.02.555.
  • [40] H. Soni, N. Sannayellappa, and R. M. Rangarasaiah, “An experimental study of influence of wire electro discharge machining parameters on surface integrity of TiNiCo shape memory alloy,” J. Mater. Res., vol. 32, no. 16, pp. 3100–3108, Aug. 2017, doi: 10.1557/JMR.2017.137.
  • [41] H. Soni, · Narendranath, and · Ramesh, “Experimental Investigation on Effects of Wire Electro Discharge Machining of Ti 50 Ni 45 Co 5 Shape Memory Alloys,” Silicon, vol. 10, pp. 2483–2490, 2018, doi: 10.1007/s12633-018-9780-9.
  • [42] H. Bisaria and P. Shandilya, “The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 3, pp. 1068–1078, Feb. 2019, doi: 10.1177/0954406218763447.
  • [43] C. Li, S. Nikumb, and F. Wong, “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices,” Opt. Lasers Eng., vol. 44, no. 10, pp. 1078–1087, Oct. 2006, doi: 10.1016/J.OPTLASENG.2005.08.003.
  • [44] A. T. Tung, B. H. Park, D. H. Liang, and G. Niemeyer, “Laser-machined shape memory alloy sensors for position feedback in active catheters,” Sensors Actuators A Phys., vol. 147, no. 1, pp. 83–92, Sep. 2008, doi: 10.1016/J.SNA.2008.03.024.
  • [45] A. T. Tung, B. H. Park, G. Niemeyer, and D. H. Liang, “Laser-machined shape memory alloy actuators for active catheters,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 4, pp. 439–446, Aug. 2007, doi: 10.1109/TMECH.2007.901926.
  • [46] M. C. Kong, D. Axinte, and W. Voice, “Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling,” J. Mater. Process. Technol., vol. 211, no. 6, pp. 959–971, Jun. 2011, doi: 10.1016/J.JMATPROTEC.2010.12.015.
  • [47] M. Frotscher, F. Kahleyss, T. Simon, D. Biermann, and G. Eggeler, “Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: A comparison,” J. Mater. Eng. Perform., vol. 20, no. 4–5, pp. 776–782, Jul. 2011, doi: 10.1007/S11665-010-9789-8/FIGURES/13.
  • [48] E. S. Lee and T. H. Shin, “An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing †,” J. Mech. Sci. Technol., vol. 25, no. 4, pp. 963–969, 2011, doi: 10.1007/s12206-011-0209-2.
  • [49] M. Frensemeier, D. Schirra, M. Weinmann, O. Weber, and E. Kroner, “Shape-Memory Topographies on Nickel–Titanium Alloys Trained by Embossing and Pulse Electrochemical Machining,” Adv. Eng. Mater., vol. 18, no. 8, pp. 1388–1395, Aug. 2016, doi: 10.1002/ADEM.201600012.
  • [50] S. Ao et al., “Electrochemical micromachining of NiTi shape memory alloy with ethylene glycol–NaCl electrolyte containing ethanol,” J. Manuf. Process., vol. 53, pp. 223–228, May 2020, doi: 10.1016/J.JMAPRO.2020.02.019.

A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review

Year 2022, Volume: 3 Issue: 1, 14 - 32, 29.04.2022
https://doi.org/10.52795/mateca.1080941

Abstract

This review article offers consolidated knowledge on the subject of several traditional and non-traditional procedures that are taking place throughout the years to form shape memory alloys (SMAs). At the primary part of the review, the usage of several shape memory alloys was shown. The dialogue then continued towards numerous traditional techniques of operating followed by the obstacles in the running of SMAs utilizing traditional techniques of operating. Moreover, numerous non-traditional processes of operations such WJM (Water jet Machining), cryogenic, WEDM (Wire Electro Discharge Machining), EDM (Electro Discharge Machining), and electrochemical machining explored. As well, Numerous of outcomes reactions that may occur during the operation procedures have been emphasized such as material removal rate (MRR), rate of tool wear, surface roughness (SR), the surface integrity. A consolidated records of various academics and their findings on this issue has been evaluated. After all, the article has been concluded by suggesting a variety of key points seen throughout the review process.

References

  • [1] D. S. T W Duerig, K N Melton, “Engineering Aspects of Shape Memory Alloys,” in Butterworth-Heinemann, 1990, pp. 5–35.
  • [2] C. M. Wayman, “SOME APPLICATIONS OF SHAPE-MEMORY ALLOYS.,” J. Met., vol. 32, no. 6, pp. 129–137, Dec. 1980, doi: 10.1007/bf03354492.
  • [3] L. Kulinsky and M. J. Madou, “9 - BioMEMs for drug delivery applications A2 - Bhansali, Shekhar,” Woodhead Publ. Ser. Biomater., pp. 218–268, 2012.
  • [4] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 221, no. 4, pp. 535–552, 2007, doi: 10.1243/09544100JAERO211.
  • [5] “File:Nitinol Austenite and martensite small.jpg - Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/File:Nitinol_Austenite_and_martensite_small.jpg. [Accessed: 26-Nov-2021].
  • [6] I. N. QADER, M. KOK, F. Dağdelen, and Y. AYDOĞDU, “‘A review of smart materials: researches and applications,’” El-Cezeri Fen ve Mühendislik Derg., Sep. 2019, doi: 10.31202/ecjse.562177.
  • [7] P. S. Lobo, J. Almeida, and L. Guerreiro, “Shape Memory Alloys Behaviour: A Review,” Procedia Eng., vol. 114, pp. 776–783, Jan. 2015, doi: 10.1016/J.PROENG.2015.08.025.
  • [8] E. O. Ezugwu, J. Bonney, and Y. Yamane, “An overview of the machinability of aeroengine alloys,” J. Mater. Process. Technol., vol. 134, no. 2, pp. 233–253, Mar. 2003, doi: 10.1016/S0924-0136(02)01042-7.
  • [9] T. KIVAK, K. HABALI, and U. ŞEKER, “The Effect of Cutting Paramaters on The Hole Quality and Tool Wear During The Drilling of Inconel 718,” Gazi Univ. J. Sci., vol. 25, no. 2, pp. 533–540, Apr. 2012.
  • [10] D. Manolakos and A. P. Markopoulos, “A review on the machining of Nickel-Titanium shape memory alloys,” Rev. Adv. Mater. Sci. 42(1), pp. 28-35, Jul. 2015.
  • [11] K. Weinert, V. Petzoldt, and D. Kötter, “Turning and Drilling of NiTi Shape Memory Alloys,” CIRP Ann., vol. 53, no. 1, pp. 65–68, Jan. 2004, doi: 10.1016/S0007-8506(07)60646-5.
  • [12] K. Weinert and V. Petzoldt, “Machining of NiTi based shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1-2 SPEC. ISS., pp. 180–184, Jul. 2004, doi: 10.1016/J.MSEA.2003.10.344.
  • [13] E. Ezugwu, Á. R. Machado, I. Pashby, and J. Wallbank, “The effect of high-pressure coolant supply when machining a heat-resistant nickel-based superalloy,” undefined, 1991.
  • [14] F. Pusavec, H. Hamdi, J. Kopac, and I. S. Jawahir, “Surface integrity in cryogenic machining of nickel based alloy—Inconel 718,” J. Mater. Process. Technol., vol. 211, no. 4, pp. 773–783, Apr. 2011, doi: 10.1016/J.JMATPROTEC.2010.12.013.
  • [15] N. Zlatin and J. Christopher, “No Title,” in Influence of Metallurgy on Machinability, American Society for Metals, 1975, pp. 296–307.
  • [16] M. Rahman, W. K. H. Seah, and T. T. Teo, “The machinability of inconel 718,” J. Mater. Process. Technol., vol. 63, no. 1–3, pp. 199–204, Jan. 1997, doi: 10.1016/S0924-0136(96)02624-6.
  • [17] R. Arunachalam and M. A. Mannan, “MACHINABILITY OF NICKEL-BASED HIGH TEMPERATURE ALLOYS,” Mach. Sci. Technol., vol. 4, no. 1, pp. 127–168, 2000, doi: 10.1080/10940340008945703.
  • [18] Y. Guo, A. Klink, C. Fu, and J. Snyder, “Machinability and surface integrity of Nitinol shape memory alloy,” CIRP Ann., vol. 62, no. 1, pp. 83–86, Jan. 2013, doi: 10.1016/J.CIRP.2013.03.004.
  • [19] E. O. E. and A. R. Machado, “Face Milling of Aerospace Materials,” in Face Milling of Aerospace Materials, 1998, pp. 3.1-3.11.
  • [20] E. O. Ezugwu and I. R. Pashby, “High speed milling of nickel-based superalloys,” J. Mater. Process. Technol., vol. 33, no. 4, pp. 429–437, Sep. 1992, doi: 10.1016/0924-0136(92)90277-Y.
  • [21] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Modelling of cutting force in end milling Inconel 718,” J. Mater. Process. Technol., vol. 58, no. 1, pp. 100–108, Mar. 1996, doi: 10.1016/0924-0136(95)02113-2.
  • [22] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Optimization of surface finish in end milling Inconel 718,” J. Mater. Process. Technol., vol. 56, no. 1–4, pp. 54–65, Jan. 1996, doi: 10.1016/0924-0136(95)01820-4.
  • [23] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Tool-life testing in the end milling of Inconel 718,” J. Mater. Process. Technol., vol. 55, no. 3–4, pp. 321–330, Dec. 1995, doi: 10.1016/0924-0136(95)02035-7.
  • [24] K. Weinert and V. Petzoldt, “Machining NiTi micro-parts by micro-milling,” Mater. Sci. Eng. A, vol. Complete, no. 481–482, pp. 672–675, May 2008, doi: 10.1016/J.MSEA.2006.10.220.
  • [25] R. Piquard, A. D’Acunto, P. Laheurte, and D. Dudzinski, “Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation,” Precis. Eng., vol. 38, no. 2, pp. 356–364, Apr. 2014, doi: 10.1016/J.PRECISIONENG.2013.11.006.
  • [26] “Machining of NiTi based shape memory alloys | Semantic Scholar.” [Online]. Available: https://www.semanticscholar.org/paper/Machining-of-NiTi-based-shape-memory-alloys-Weinert-Petzoldt/77cf5abbcf35edcd6fa9a9a982d5959eedb1a415. [Accessed: 29-Nov-2021].
  • [27] H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Process. Tech., vol. 3, no. 105, pp. 327–332, 2000.
  • [28] M. Manjaiah, S. Narendranath, and S. Basavarajappa, “Review on non-conventional machining of shape memory alloys,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 1, pp. 12–21, Jan. 2014, doi: 10.1016/S1003-6326(14)63022-3.
  • [29] S. Daneshmand, E. Farahmand Kahrizi, E. Abedi, and M. Mir Abdolhosseini, “Influence of machining parameters on electro discharge machining of NiTi shape memory alloys,” Artic. Int. J. Electrochem. Sci., vol. 8, pp. 3095–3104, 2013.
  • [30] W. Theisen and A. Schuermann, “Electro discharge machining of nickel–titanium shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1–2, pp. 200–204, Jul. 2004, doi: 10.1016/J.MSEA.2003.09.115.
  • [31] S. Zinelis, “Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM),” Dent. Mater., vol. 23, no. 5, pp. 601–607, May 2007, doi: 10.1016/J.DENTAL.2006.03.021.
  • [32] A. Gangele and A. Mishra, “Surface Roughness Optimization During Machining Of Niti Shape Memory Alloy By EDM Through Taguchi’s Technique,” Mater. Today Proc., vol. 29, pp. 343–347, Jan. 2020, doi: 10.1016/J.MATPR.2020.07.287.
  • [33] V. S. Jatti, “Multi-characteristics optimization in EDM of NiTi alloy, NiCu alloy and BeCu alloy using Taguchi’s approach and utility concept,” Alexandria Eng. J., vol. 57, no. 4, pp. 2807–2817, Dec. 2018, doi: 10.1016/J.AEJ.2017.11.004.
  • [34] M. H. Abidi, A. M. Al-Ahmari, U. Umer, and M. S. Rasheed, “Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II,” Measurement, vol. 125, pp. 336–349, Sep. 2018, doi: 10.1016/J.MEASUREMENT.2018.04.096.
  • [35] S. Daneshmand, V. Monfared, and A. A. Lotfi Neyestanak, “Effect of Tool Rotational and Al2O3 Powder in Electro Discharge Machining Characteristics of NiTi-60 Shape Memory Alloy,” Silicon 2016 92, vol. 9, no. 2, pp. 273–283, Apr. 2016, doi: 10.1007/S12633-016-9412-1.
  • [36] C. H. Fu, J. F. Liu, Y. B. Guo, and Q. Z. Zhao, “A Comparative Study on White Layer Properties by Laser Cutting vs. Electrical Discharge Machining of Nitinol Shape Memory Alloy,” Procedia CIRP, vol. 42, pp. 246–251, Jan. 2016, doi: 10.1016/J.PROCIR.2016.02.280.
  • [37] S. F. Hsieh, S. L. Chen, H. C. Lin, M. H. Lin, and S. Y. Chiou, “The machining characteristics and shape recovery ability of Ti–Ni–X (X=Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining,” Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 509–514, May 2009, doi: 10.1016/J.IJMACHTOOLS.2008.12.013.
  • [38] R. Chaudhari, J. J. Vora, V. Patel, L. N. López De Lacalle, and D. M. Parikh, “materials Surface Analysis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys,” Materials (Basel)., vol. 530, no. 3, pp. 2–13, 2020, doi: 10.3390/ma13030530.
  • [39] N. Praveen, U. S. Mallik, A. G. Shivasiddaramaiah, and G. N. Narendra Reddy, “A study on material removal rate of Cu-Al-Mn shape memory alloys in WEDM,” undefined, vol. 46, pp. 2770–2774, 2021, doi: 10.1016/J.MATPR.2021.02.555.
  • [40] H. Soni, N. Sannayellappa, and R. M. Rangarasaiah, “An experimental study of influence of wire electro discharge machining parameters on surface integrity of TiNiCo shape memory alloy,” J. Mater. Res., vol. 32, no. 16, pp. 3100–3108, Aug. 2017, doi: 10.1557/JMR.2017.137.
  • [41] H. Soni, · Narendranath, and · Ramesh, “Experimental Investigation on Effects of Wire Electro Discharge Machining of Ti 50 Ni 45 Co 5 Shape Memory Alloys,” Silicon, vol. 10, pp. 2483–2490, 2018, doi: 10.1007/s12633-018-9780-9.
  • [42] H. Bisaria and P. Shandilya, “The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 3, pp. 1068–1078, Feb. 2019, doi: 10.1177/0954406218763447.
  • [43] C. Li, S. Nikumb, and F. Wong, “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices,” Opt. Lasers Eng., vol. 44, no. 10, pp. 1078–1087, Oct. 2006, doi: 10.1016/J.OPTLASENG.2005.08.003.
  • [44] A. T. Tung, B. H. Park, D. H. Liang, and G. Niemeyer, “Laser-machined shape memory alloy sensors for position feedback in active catheters,” Sensors Actuators A Phys., vol. 147, no. 1, pp. 83–92, Sep. 2008, doi: 10.1016/J.SNA.2008.03.024.
  • [45] A. T. Tung, B. H. Park, G. Niemeyer, and D. H. Liang, “Laser-machined shape memory alloy actuators for active catheters,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 4, pp. 439–446, Aug. 2007, doi: 10.1109/TMECH.2007.901926.
  • [46] M. C. Kong, D. Axinte, and W. Voice, “Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling,” J. Mater. Process. Technol., vol. 211, no. 6, pp. 959–971, Jun. 2011, doi: 10.1016/J.JMATPROTEC.2010.12.015.
  • [47] M. Frotscher, F. Kahleyss, T. Simon, D. Biermann, and G. Eggeler, “Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: A comparison,” J. Mater. Eng. Perform., vol. 20, no. 4–5, pp. 776–782, Jul. 2011, doi: 10.1007/S11665-010-9789-8/FIGURES/13.
  • [48] E. S. Lee and T. H. Shin, “An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing †,” J. Mech. Sci. Technol., vol. 25, no. 4, pp. 963–969, 2011, doi: 10.1007/s12206-011-0209-2.
  • [49] M. Frensemeier, D. Schirra, M. Weinmann, O. Weber, and E. Kroner, “Shape-Memory Topographies on Nickel–Titanium Alloys Trained by Embossing and Pulse Electrochemical Machining,” Adv. Eng. Mater., vol. 18, no. 8, pp. 1388–1395, Aug. 2016, doi: 10.1002/ADEM.201600012.
  • [50] S. Ao et al., “Electrochemical micromachining of NiTi shape memory alloy with ethylene glycol–NaCl electrolyte containing ethanol,” J. Manuf. Process., vol. 53, pp. 223–228, May 2020, doi: 10.1016/J.JMAPRO.2020.02.019.
There are 50 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Manufacturing and Industrial Engineering
Journal Section Review
Authors

Farıj Ben Saoud 0000-0001-6282-4249

Mehmet Erdi Korkmaz 0000-0002-0481-6002

Early Pub Date April 22, 2022
Publication Date April 29, 2022
Submission Date March 1, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Ben Saoud, F., & Korkmaz, M. E. (2022). A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review. Manufacturing Technologies and Applications, 3(1), 14-32. https://doi.org/10.52795/mateca.1080941
AMA Ben Saoud F, Korkmaz ME. A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review. MATECA. April 2022;3(1):14-32. doi:10.52795/mateca.1080941
Chicago Ben Saoud, Farıj, and Mehmet Erdi Korkmaz. “A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review”. Manufacturing Technologies and Applications 3, no. 1 (April 2022): 14-32. https://doi.org/10.52795/mateca.1080941.
EndNote Ben Saoud F, Korkmaz ME (April 1, 2022) A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review. Manufacturing Technologies and Applications 3 1 14–32.
IEEE F. Ben Saoud and M. E. Korkmaz, “A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review”, MATECA, vol. 3, no. 1, pp. 14–32, 2022, doi: 10.52795/mateca.1080941.
ISNAD Ben Saoud, Farıj - Korkmaz, Mehmet Erdi. “A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review”. Manufacturing Technologies and Applications 3/1 (April 2022), 14-32. https://doi.org/10.52795/mateca.1080941.
JAMA Ben Saoud F, Korkmaz ME. A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review. MATECA. 2022;3:14–32.
MLA Ben Saoud, Farıj and Mehmet Erdi Korkmaz. “A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review”. Manufacturing Technologies and Applications, vol. 3, no. 1, 2022, pp. 14-32, doi:10.52795/mateca.1080941.
Vancouver Ben Saoud F, Korkmaz ME. A Review on Machinability of Shape Memory Alloys Through Traditional and Non-Traditional Machining Processes: A Review. MATECA. 2022;3(1):14-32.