Research Article
BibTex RIS Cite

Sürtünme Kaynaklı Çatallı Milin Boğaz Cidar Kalınlığındaki Azaltmanın Dayanım Üzerindeki Etkisinin İncelenmesi

Year 2023, Volume: 4 Issue: 1, 49 - 58, 30.04.2023
https://doi.org/10.52795/mateca.1272866

Abstract

Sürtünme kaynağı yönteminin birleştirmelerde kullanılması, maliyet düşürme, ağırlık azaltma ve daha yüksek kalite gibi birçok avantaj sağlar. Dönel sürtünme kaynağı (RFW) ile üretilen çatallı mil birbirine kaynaklanmış çatallı bir parça ve içi boş yuvarlak çubuk içerir. Ve bu nedenle, ağırlığı azaltmak için çatallı milin merkezinden malzeme azaltmak için kullanılan ek bir delme yöntemi gerekmez. RFW yönteminde kullanılan içi boş yuvarlak çubuk sayesinde ağırlık kendiliğinden azaltılmıştır. Farklı uygulamalar için boğaz çapından malzeme kaldırılarak çok çeşitli cidar kalınlıklarında sürtünme kaynaklı çatallı mil kullanmak mümkündür. Bu noktada kilit faktör, boğaz çapında azaltılmış cidar kalınlığına sahip sürtünme kaynaklı çatallı milin dayanımıdır. Bu çalışmanın amacı, RFW ile üretilen çatallı milin azaltılmış cidar kalınlığının parçanın dayanımı üzerindeki etkisinin araştırılmasıdır. Bu amaçla, RFW ve cidar kalınlığını azaltmak için tornalama ve frezeleme gibi ardışık işlemler kullanılarak çatallı miller üretilmiştir. Dayanımı belirlemek için farklı cidar kalınlıklarındaki numuneler test edilmiştir. Ek olarak, numunelerin her varyasyonu için sonlu eleman analizleri (FEA) uygulanmış ve test sonuçlarıyla karşılaştırılmıştır. Sonuç olarak RFW ve ardından belirli bir cidar kalınlığı elde etmek için ardışık talaşlı imalat işlemleri ile üretilen azaltılmış cidar kalınlığına sahip çatallı millerin kardan mili imalatında güvenle kullanılabileceği belirlenmiştir.

Supporting Institution

Tirsan Kardan A.Ş.

References

  • 1. S.W. Kallee, E.D. Nicholas, M.J. Russell, Friction welding of aero engine components, 10th World Conference on Titanium Ti-2003, 2003, Hamburg, Germany.
  • 2. V. I. Vill, Friction Welding of Metals, American Welding Society, New York, 1962.
  • 3. W. Kinley, Inertia welding: simple in principle and application, Welding and Metal Fabrication, 585–589, 1979.
  • 4. N. Fomichev, The friction welding of new high-speed tool steels to structural steels, Weld Prod, 27(4): 31 34, 1980.
  • 5. M. Maalekian, Friction welding critical assessment of literature, Science and Technology of Welding and Joining, 12(8): 738 759, 2007.
  • 6. ANSI/AWS C6.1-89, Recommended Practices for Friction Welding, American National Standards Institute, 1989.
  • 7. T. Lienert, W.A. Baeslack, J. Ringnalda, H.L. Fraser, Inertia-friction welding of SiC-reinforced 8009 aluminium, J Mater Sci, 31(8): 2149–2157, 1996.
  • 8. V.V. Satyanarayana, G.M. Reddy, T.J. Mohandas, Dissimilar metal friction welding of austenitic–ferritic stainless steels, Journal of Materials Processing Technology, 160: 128–137, 2005.
  • 9. A. Ambroziak, Friction welding of titanium–tungsten pseudoalloy joints, Journal of Alloys and Compounds, 506(2): 761–765, 2010.
  • 10. H.C. Dey, M. Ashfaq, A.K. Bhaduri, K.R. Prasad, Joining of titanium to 304L stainless steel by friction welding, Journal of Materials Processing Technology, 209(18-19):5862–5870, 2009.
  • 11. G.J. Bendzsak, T.H. North, Z. Li, Numerical model for steady-state flow in friction welding, Acta Materialia, 45(4): 1735–1745, 1997.
  • 12. M. Kimura, M. Kusaka, K. Seo, A. Fuji, Improving Joint Properties of Friction Welded Joint of High Tensile Steel, JSME Int J Ser A, 48(4): 399–405, 2005.
  • 13. Z.W. Huang, H.Y.Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, G. Baxter, Inertia friction welding dissimilar nickel-based superalloys alloy 720Li to IN718, Metallurgical and Materials Transactions A, 38(7): 1608-1620, 2007.
  • 14. W.B. Lee, M.G. Kim, J.M. Koo, K.K. Kim, D.J. Quesnel, Y.J. Kim, S.B. Jung, Friction welding of TiAl and AISI4140, Journal of Materials Science, 39(3):1125–1128, 2004.
  • 15. P. Sathiya, S. Aravindan, A.N. Haq, Some experimental investigations on friction welded stainless steel joints, Materials & Design, 29(6): 1099-1109, 2008.
  • 16. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawat i, A. B. Ismail, Advances in friction welding process: A review, Science and Technology of Welding and Joining, 15(7): 534-558, 2010.
  • 17. İ. Çelikyürek, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe 28Al and 316 L stainless steel, Materials Science and Engineering: A, 528(29): 8530 8536, 2011.
  • 18. M. Maalekian, Thermal modelling of friction welding, ISIJ International, 10: 1429–1433, 2008.
  • 19. O.T. Midling, Ø. Grong, A process model for friction welding of Al-Mg-Si alloys and Al-SiC metal matrix composites, Acta Metallurgica et Materialia, 42(5): 1595-1622, 1994.
  • 20. M. Kimura, M. Kusaka, K. Kaizu, et al., Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel, Int J Adv Manuf Technol 82: 489–499, 2016.
  • 21. M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, A.B. Ismail, Effect of welding speed on mechanical strength of friction welded joint of YSZ–alumina composite and 6061 aluminum alloy. Materials Science and Engineering: A, 528(13–14): 4753-4760, 2011.
  • 22. E. P. Alves, F. P. Neto, C.Y. An., Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process, Journal of Aerospace Technology and Management, 2(3): 301-306, 2010.
  • 23. J.T. Xiong, J.L. Li, Y.N. Wei, F.S. Zhang, W.D. Huang, An analytical model of steady-state continuous drive friction welding, Acta Materialia, 61(5): 1662-1675, 2013.
  • 24. ISO 18265:2013, Metallic materials Conversion of hardness values, International Organization for Standardization, 2013.
  • 25. O. Şen, M.C. Kahyalar, Structural analysis of yoke part in design of driveshaft, International Journal Of Automotive Science and Technology, 4(4): 248-252, 2020.

Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength

Year 2023, Volume: 4 Issue: 1, 49 - 58, 30.04.2023
https://doi.org/10.52795/mateca.1272866

Abstract

Usage of friction welding method on the joints provides many advantages such as cost reduction, weight reduction and higher quality. The yoke shaft produced by rotary friction welding (RFW) involves a yoked part and a hollow round bar which are welded to each other. And so, no additional drilling method used in the way of removing material from the centre of the yoke shaft, is required to reduce the weight. The weight is inherently reduced thanks to hollow round bar used in RFW method. It is possible to use a friction welded yoke shaft in a wide range of wall thickness by removing material from the shank diameter for different applications. At this point, the key factor is strength of the friction welded yoke shaft with reduced wall thickness on the shank diameter. The aim of this study is investigation the effect of the reduced wall thickness of a yoke shaft produced by RFW on the strength. For this purpose, yoke shafts were manufactured by using RFW and consecutive processes such as turning and millings to reduce the wall thickness. The specimens in different wall thickness were tested to determine the strength. Additionally finite element analyses (FEAs) were implemented for each variation of the specimens and compared with the test results. As a result, it was determined that yoke shafts with reduced wall thicknesses, which were produced by RFW and then consecutively machining operations to obtain a specific wall thickness, can be used in drive shaft manufacturing securely.

References

  • 1. S.W. Kallee, E.D. Nicholas, M.J. Russell, Friction welding of aero engine components, 10th World Conference on Titanium Ti-2003, 2003, Hamburg, Germany.
  • 2. V. I. Vill, Friction Welding of Metals, American Welding Society, New York, 1962.
  • 3. W. Kinley, Inertia welding: simple in principle and application, Welding and Metal Fabrication, 585–589, 1979.
  • 4. N. Fomichev, The friction welding of new high-speed tool steels to structural steels, Weld Prod, 27(4): 31 34, 1980.
  • 5. M. Maalekian, Friction welding critical assessment of literature, Science and Technology of Welding and Joining, 12(8): 738 759, 2007.
  • 6. ANSI/AWS C6.1-89, Recommended Practices for Friction Welding, American National Standards Institute, 1989.
  • 7. T. Lienert, W.A. Baeslack, J. Ringnalda, H.L. Fraser, Inertia-friction welding of SiC-reinforced 8009 aluminium, J Mater Sci, 31(8): 2149–2157, 1996.
  • 8. V.V. Satyanarayana, G.M. Reddy, T.J. Mohandas, Dissimilar metal friction welding of austenitic–ferritic stainless steels, Journal of Materials Processing Technology, 160: 128–137, 2005.
  • 9. A. Ambroziak, Friction welding of titanium–tungsten pseudoalloy joints, Journal of Alloys and Compounds, 506(2): 761–765, 2010.
  • 10. H.C. Dey, M. Ashfaq, A.K. Bhaduri, K.R. Prasad, Joining of titanium to 304L stainless steel by friction welding, Journal of Materials Processing Technology, 209(18-19):5862–5870, 2009.
  • 11. G.J. Bendzsak, T.H. North, Z. Li, Numerical model for steady-state flow in friction welding, Acta Materialia, 45(4): 1735–1745, 1997.
  • 12. M. Kimura, M. Kusaka, K. Seo, A. Fuji, Improving Joint Properties of Friction Welded Joint of High Tensile Steel, JSME Int J Ser A, 48(4): 399–405, 2005.
  • 13. Z.W. Huang, H.Y.Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, G. Baxter, Inertia friction welding dissimilar nickel-based superalloys alloy 720Li to IN718, Metallurgical and Materials Transactions A, 38(7): 1608-1620, 2007.
  • 14. W.B. Lee, M.G. Kim, J.M. Koo, K.K. Kim, D.J. Quesnel, Y.J. Kim, S.B. Jung, Friction welding of TiAl and AISI4140, Journal of Materials Science, 39(3):1125–1128, 2004.
  • 15. P. Sathiya, S. Aravindan, A.N. Haq, Some experimental investigations on friction welded stainless steel joints, Materials & Design, 29(6): 1099-1109, 2008.
  • 16. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawat i, A. B. Ismail, Advances in friction welding process: A review, Science and Technology of Welding and Joining, 15(7): 534-558, 2010.
  • 17. İ. Çelikyürek, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe 28Al and 316 L stainless steel, Materials Science and Engineering: A, 528(29): 8530 8536, 2011.
  • 18. M. Maalekian, Thermal modelling of friction welding, ISIJ International, 10: 1429–1433, 2008.
  • 19. O.T. Midling, Ø. Grong, A process model for friction welding of Al-Mg-Si alloys and Al-SiC metal matrix composites, Acta Metallurgica et Materialia, 42(5): 1595-1622, 1994.
  • 20. M. Kimura, M. Kusaka, K. Kaizu, et al., Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel, Int J Adv Manuf Technol 82: 489–499, 2016.
  • 21. M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, A.B. Ismail, Effect of welding speed on mechanical strength of friction welded joint of YSZ–alumina composite and 6061 aluminum alloy. Materials Science and Engineering: A, 528(13–14): 4753-4760, 2011.
  • 22. E. P. Alves, F. P. Neto, C.Y. An., Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process, Journal of Aerospace Technology and Management, 2(3): 301-306, 2010.
  • 23. J.T. Xiong, J.L. Li, Y.N. Wei, F.S. Zhang, W.D. Huang, An analytical model of steady-state continuous drive friction welding, Acta Materialia, 61(5): 1662-1675, 2013.
  • 24. ISO 18265:2013, Metallic materials Conversion of hardness values, International Organization for Standardization, 2013.
  • 25. O. Şen, M.C. Kahyalar, Structural analysis of yoke part in design of driveshaft, International Journal Of Automotive Science and Technology, 4(4): 248-252, 2020.
There are 25 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Onur Şen 0000-0001-8763-3246

Mert Can Kahyalar 0000-0001-6826-5310

Early Pub Date April 30, 2023
Publication Date April 30, 2023
Submission Date March 29, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Şen, O., & Kahyalar, M. C. (2023). Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength. Manufacturing Technologies and Applications, 4(1), 49-58. https://doi.org/10.52795/mateca.1272866
AMA Şen O, Kahyalar MC. Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength. MATECA. April 2023;4(1):49-58. doi:10.52795/mateca.1272866
Chicago Şen, Onur, and Mert Can Kahyalar. “Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength”. Manufacturing Technologies and Applications 4, no. 1 (April 2023): 49-58. https://doi.org/10.52795/mateca.1272866.
EndNote Şen O, Kahyalar MC (April 1, 2023) Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength. Manufacturing Technologies and Applications 4 1 49–58.
IEEE O. Şen and M. C. Kahyalar, “Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength”, MATECA, vol. 4, no. 1, pp. 49–58, 2023, doi: 10.52795/mateca.1272866.
ISNAD Şen, Onur - Kahyalar, Mert Can. “Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength”. Manufacturing Technologies and Applications 4/1 (April 2023), 49-58. https://doi.org/10.52795/mateca.1272866.
JAMA Şen O, Kahyalar MC. Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength. MATECA. 2023;4:49–58.
MLA Şen, Onur and Mert Can Kahyalar. “Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength”. Manufacturing Technologies and Applications, vol. 4, no. 1, 2023, pp. 49-58, doi:10.52795/mateca.1272866.
Vancouver Şen O, Kahyalar MC. Investigation of The Effect of Reduced Shank Thickness of Friction Welded Yoke Shaft on Strength. MATECA. 2023;4(1):49-58.