Research Article
BibTex RIS Cite

Farklı Akım Değerlerinde Elektromanyetik Alan Etkisi Altındaki Metallerin Sayısal Analizi

Year 2023, Volume: 4 Issue: 2, 111 - 119, 30.08.2023
https://doi.org/10.52795/mateca.1342135

Abstract

Ergitme ocaklarında karıştırma özelliği dolayısıyla düzgün bir metal ve ısı dağılımı, alaşım kayıplarının azlığı, sıcaklık ve bileşim kontrolünün çok iyi olması, işlem görecek malzeme özelliklerinin sınırlı olmaması, istenildiği zaman kısa süre içerisinde soğuktan işletime alınabilmesi hava kirliliği probleminin olmayışı indüksiyon ergitme ocakları kullanımının yaygınlaşmasında temel faktörlerdir. İndüksiyonla ısıtmada, ısıtılacak parçanın her tarafı eşit miktarda ısı almamaktadır. Yalnız ısıtılacak parça ısıyı çok iyi ileten cinsten ise, parçanın her tarafı birbirine yakın miktarda ısıtılabilmektedir. İndüksiyon ısıtma parçanın yüzeyinde çok yüksek, iç kısımlarında az, merkezinde ise daha az bir ısı meydana getirmektedir. Bu ısınma akım kaynağının frekansına ve nüfuz derinliğine bağlı olarak değişmektedir. Bu çalışmada, indüksiyonla ısıtmada metal malzemedeki sıcaklık dağılımını etkileyen elektromanyetik ve termal parametrelerden biri olan akım değeri farklı akım değerlerde alınarak ANSYS sayısal çözümleme programında bir model oluşturulmuştur. Oluşturulan simülasyon modelinde silindirik bir metalik malzemede üç boyutlu olarak sayısal çözümleme sonuçları elde edilmiştir. Simülasyon programında indüksiyon bobini tasarımı için ihtiyaç duyulan güç ve frekans ile malzemenin manyetik geçirgenlik, özdirenç, ısı iletim katsayısı ve malzemenin indüktör içerisindeki konumu sınır şartları olarak belirlenmiştir. Bu değişkenlere bağlı olarak malzeme üzerindeki sıcaklık ve manyetik alan dağılımları elde edilmiştir. Sayısal çözümleme yanında sayısal çözümlemenin doğrulanabilmesi için, özel olarak imal edilmiş bir indüksiyon bobini içerisine özellikleri bilinen silindirik metal malzeme yerleştirilerek ısıtılmış ve deneysel olarak malzeme üzerindeki sıcaklık değerleri ölçülmüştür. Deneyde kullanılan malzeme boyutları ve özellikleri ile diğer parametreleri aynı seçilen ANSYS modelleme sonuçları deneysel sonuçlarla karşılaştırmalı olarak verilmiş ve irdelenmiştir.

References

  • 1. V. Rudnev, Handbook of induction heating, Manufacturing Engineering and Materials Processing, Marcel Dekker, New York, 2003.
  • 2. B. Drobrenko, O. Hachkevyc, T. Kornytskyi, A mathematical simulation of high temperature induction heating of electroconductive solids, International Journal of Heat and Mass Transfer, 50: 616-624, 2007.
  • 3. J.Y. Jang, Y.W. Chiu, Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro- magnetic induction heating, Applied Thermal Engineering, 27(11-12): 1883-1894, 2007.
  • 4. H. Shen, Z. Q. Yao, Y. J. Shi, J. Hu, Study on temperature field in high frequency induction heating, Acta Metallurgica Sinica (English Letters), 19(3): 190-196, 2006.
  • 5. I. Magnabosco, P. Ferro, A. Tiziani, F. Bonollo, Induction Heat Treatment of a ISO C45 steel bar: experimental and numerical analysis, Computational Materials Science, 35: 98-106, 2006.
  • 6. N. Xu, B. Y. Zong, Stress in particular reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling, Computational Material Science, 43: 1094-1100, 2008.
  • 7. N. Xion-Zhao, X. Min, Z. Xing-zhong, G. Yong, Numerical simulation of heat transfer and deformation of initial shell in soft contact continuous casting mold under high frequency electromagnetic field, Journal of Iron and Steel Research International, 14(6): 14-21, 2007.
  • 8. O. Biro, K. Preis, On the Use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents, IEEE Transactions on Magnetics 25(4): 3145–3159, 1989.
  • 9. F. Bay, V. Labbe, Y. Favennec, J.L. Chenot, A numerical model for induction heating processes coupling electromagnetism and thermomechanics, Int. J.Numer. Methods Eng., 58(6): 839–867, 2003.
  • 10. M. Areitioaurtena, U. Segurajauregi, I. Urresti, M. Fisk, E. Ukar, Predicting the induction hardened case in 42CrMo4 cylinders, Procedia CIRP, 87: 545–550, 2020.
  • 11. M. Areitioaurtena, U. Segurajauregi, V. Akujärvi, M. Fisk, I. Urresti, E. Ukar, A semi-analytical coupled simulation approach for induction heating, Adv. Model. Simul. Eng. Sci., 8(14): 1-19, 2021.
  • 12. T.A. Jankowski, N.H. Pawley, L.M. Gonzales, C.A. Ross, J.D. Jurney, Approximate analytical solution for induction heating of solid cylinders, Appl. Math. Model., 40(4): 2770–2782, 2016.
  • 13. M. Eroğlu , İ. Esen and M. A. Koç, Sonlu elemanlar yöntemi kullanarak demiryolu bojilerinin titreşim analizi, İleri Teknoloji Bilimleri Dergisi, 7(1): 60-67, 2018.
  • 14. M Eroğlu, MA Koç, İ Esen, R Kozan, Train-structure interaction for high-speed trains using a full 3D train model, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1): 48, 2022.
  • 15. H.M. Ünver, İndüksiyonlu çelik tav firinlarinda güç ünitelerinin PLC ile denetimi, Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, Türkiye, 2004.
  • 16. Ansys, Ansys Emag, https://www.ansys.com, 2010.

Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values

Year 2023, Volume: 4 Issue: 2, 111 - 119, 30.08.2023
https://doi.org/10.52795/mateca.1342135

Abstract

The primary factors of the widespread use of induction melting furnaces are uniform metal and heat distribution due to its mixing features, low alloy losses, excellent temperature and composition control, versatility in processing different materials, the ability to quickly start the process from a cold state when needed, and the absence of air pollution problems. In induction heating, not all sides of the part to be heated receive an equal amount of heat. Only if the part to be heated is of the type that conducts heat very well can all sides of the part be heated close to each other. Induction heating produces high heat on the surface, less on the inner parts, and least on the center of the material. This heating varies depending on the frequency of the current source and the penetration depth. In this study, a model was created in ANSYS numerical analysis program by taking the current, which is one of the electromagnetic and thermal parameters affecting the temperature distribution in the metalic material in induction heating, at different values. In the simulation model created, three-dimensional numerical analysis results of a cylindrical metallic material were obtained. In the simulation program, the power and frequency required for the design of the induction coil and the magnetic permeability, resistivity, heat transfer coefficient of the material and the position of the material in the inductor are determined as boundary conditions. Depending on these variables, the temperature and magnetic field distributions on the material were obtained. In addition to the numerical analysis, a cylindrical metallic material with known properties was placed in a specially manufactured induction coil and the temperature values on the material were measured to verify the numerical analysis. ANSYS modeling results with the same material dimensions, properties, and other parameters used in the experiment, were given and examined in comparison with the experimental results.

References

  • 1. V. Rudnev, Handbook of induction heating, Manufacturing Engineering and Materials Processing, Marcel Dekker, New York, 2003.
  • 2. B. Drobrenko, O. Hachkevyc, T. Kornytskyi, A mathematical simulation of high temperature induction heating of electroconductive solids, International Journal of Heat and Mass Transfer, 50: 616-624, 2007.
  • 3. J.Y. Jang, Y.W. Chiu, Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro- magnetic induction heating, Applied Thermal Engineering, 27(11-12): 1883-1894, 2007.
  • 4. H. Shen, Z. Q. Yao, Y. J. Shi, J. Hu, Study on temperature field in high frequency induction heating, Acta Metallurgica Sinica (English Letters), 19(3): 190-196, 2006.
  • 5. I. Magnabosco, P. Ferro, A. Tiziani, F. Bonollo, Induction Heat Treatment of a ISO C45 steel bar: experimental and numerical analysis, Computational Materials Science, 35: 98-106, 2006.
  • 6. N. Xu, B. Y. Zong, Stress in particular reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling, Computational Material Science, 43: 1094-1100, 2008.
  • 7. N. Xion-Zhao, X. Min, Z. Xing-zhong, G. Yong, Numerical simulation of heat transfer and deformation of initial shell in soft contact continuous casting mold under high frequency electromagnetic field, Journal of Iron and Steel Research International, 14(6): 14-21, 2007.
  • 8. O. Biro, K. Preis, On the Use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents, IEEE Transactions on Magnetics 25(4): 3145–3159, 1989.
  • 9. F. Bay, V. Labbe, Y. Favennec, J.L. Chenot, A numerical model for induction heating processes coupling electromagnetism and thermomechanics, Int. J.Numer. Methods Eng., 58(6): 839–867, 2003.
  • 10. M. Areitioaurtena, U. Segurajauregi, I. Urresti, M. Fisk, E. Ukar, Predicting the induction hardened case in 42CrMo4 cylinders, Procedia CIRP, 87: 545–550, 2020.
  • 11. M. Areitioaurtena, U. Segurajauregi, V. Akujärvi, M. Fisk, I. Urresti, E. Ukar, A semi-analytical coupled simulation approach for induction heating, Adv. Model. Simul. Eng. Sci., 8(14): 1-19, 2021.
  • 12. T.A. Jankowski, N.H. Pawley, L.M. Gonzales, C.A. Ross, J.D. Jurney, Approximate analytical solution for induction heating of solid cylinders, Appl. Math. Model., 40(4): 2770–2782, 2016.
  • 13. M. Eroğlu , İ. Esen and M. A. Koç, Sonlu elemanlar yöntemi kullanarak demiryolu bojilerinin titreşim analizi, İleri Teknoloji Bilimleri Dergisi, 7(1): 60-67, 2018.
  • 14. M Eroğlu, MA Koç, İ Esen, R Kozan, Train-structure interaction for high-speed trains using a full 3D train model, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1): 48, 2022.
  • 15. H.M. Ünver, İndüksiyonlu çelik tav firinlarinda güç ünitelerinin PLC ile denetimi, Doktora Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Kırıkkale, Türkiye, 2004.
  • 16. Ansys, Ansys Emag, https://www.ansys.com, 2010.
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Kadir Gündoğan 0000-0001-6742-3110

Veli Çelik 0000-0003-4338-385X

Early Pub Date August 31, 2023
Publication Date August 30, 2023
Submission Date August 13, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Gündoğan, K., & Çelik, V. (2023). Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values. Manufacturing Technologies and Applications, 4(2), 111-119. https://doi.org/10.52795/mateca.1342135
AMA Gündoğan K, Çelik V. Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values. MATECA. August 2023;4(2):111-119. doi:10.52795/mateca.1342135
Chicago Gündoğan, Kadir, and Veli Çelik. “Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values”. Manufacturing Technologies and Applications 4, no. 2 (August 2023): 111-19. https://doi.org/10.52795/mateca.1342135.
EndNote Gündoğan K, Çelik V (August 1, 2023) Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values. Manufacturing Technologies and Applications 4 2 111–119.
IEEE K. Gündoğan and V. Çelik, “Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values”, MATECA, vol. 4, no. 2, pp. 111–119, 2023, doi: 10.52795/mateca.1342135.
ISNAD Gündoğan, Kadir - Çelik, Veli. “Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values”. Manufacturing Technologies and Applications 4/2 (August 2023), 111-119. https://doi.org/10.52795/mateca.1342135.
JAMA Gündoğan K, Çelik V. Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values. MATECA. 2023;4:111–119.
MLA Gündoğan, Kadir and Veli Çelik. “Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values”. Manufacturing Technologies and Applications, vol. 4, no. 2, 2023, pp. 111-9, doi:10.52795/mateca.1342135.
Vancouver Gündoğan K, Çelik V. Numerical Analysis of Metals Under The Influence of Electromagnetic Field at Different Current Values. MATECA. 2023;4(2):111-9.