Research Article
BibTex RIS Cite

Çarpışma Kutusunun İçine Yerleştirilen Farklı Alüminyum Alaşımlı Köpüklerin Enerji Sönümleme Kapasitelerinin Karşılaştırılması

Year 2024, Volume: 5 Issue: 2, 118 - 129, 30.08.2024
https://doi.org/10.52795/mateca.1520669

Abstract

Dünya çapında artan nüfus ve buna bağlı olarak artan otomobil sayısı trafik kazası riskini artırmaktadır. Artan bu risk nedeniyle otomobil üreticileri olası kazalarda sürücü ve yolcuları korumak için çeşitli güvenlik önlemleri almaktadır. Çarpışma kutuları, önden veya arkadan çarpma durumunda darbeyi ilk absorbe eden, ortaya çıkan deformasyon enerjisini absorbe eden ve araca mümkün olan en az seviyede iletilmesini sağlayan pasif güvenlik sistemi elemanlarından biridir. Bu nedenle çarpışma kutularının enerji absorbe etme yeteneğinin arttırılması son derece önemli bir konudur. Bu çalışmada normalde içi boş olarak üretilen çarpışma kutularının içine alüminyum köpük esaslı malzemeler yerleştirilerek enerji sönümleme yeteneklerinin arttırılması amaçlanmıştır. Bu amaçla üç farklı alüminyum alaşımı (Al2024, Al5083 ve Al6061) seçilmiş ve en iyi enerji sönümleme yeteneğini belirlemek için karşılaştırılmıştır. Al6061 alaşımları, araştırma parametreleri içerisinde en büyük sönümlenmiş enerji değerini (221.711 J) üretmiştir. Bu değer, Al2024 alaşımı için 169.556 J ve Al5083 alaşımı için 214.101 J olarak belirlenmiştir. Boş çarpma kutusuyla karşılaştırıldığında alüminyum köpükler kullanılarak enerji sönümleme kabiliyetinin yaklaşık 4-5 kat arttığı görülmüştür.

Supporting Institution

Karabük Üniversitesi

Project Number

FYL-2020-2238

Thanks

Bu çalışma FYL-2020-2238 numaralı Karabük Üniversitesi Bilimsel Araştırma Projesi tarafından desteklenmiştir.

References

  • 1. I. Kusyairi, H.M. Himawan, M.A. Choiron, Y.S. Irawan, Effects of origami pattern crash box and rectangular pattern crash box on the modelling of MPV car structure on deformation, Journal Of Energy, Mechanical, Material, And Manufacturing Engineering, 3(2): 61–68, 2018.
  • 2. N.A.Z. Abdullah, M.S.M. Sani, M.S. Salwani, N.A. Husain, A review on crashworthiness studies of crash box structure, Thin-Walled Structures, 153: 106795, 2020.
  • 3. N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial ımpact loading, Procedia Engineering, 173: 1390–1398, 2017.
  • 4. M.A. Choiron and M.A. Yaqin, Optimization of two segments crash box with rubber joint using response surface methodology, AIP Conference Proceedings, 2278 (1): 020012, 2020.
  • 5. N.N. Hussain, S.P. Regalla, A. Jusuf, Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material, Proceedings Of The Institution Of Mechanical Engineers, Part L: Journal Of Materials: Design And Applications, 235 (1): 114–130, 2020.
  • 6. A. Pavlovic and C. Fragassa, Investigating the crash-box-structure’s ability to absorb energy, International Journal Of Crashworthiness, 2024.
  • 7. Y. Hwang and J. Han, Energy absorption optimisation of an origami-shaped crash box under axial loading, International Journal Of Crashworthiness, 29 (1): 132–141, 2024.
  • 8. F.A.F. Astuti, M.A. Choiron, A. Purnowidodo, Y.S. Irawan, Energy absorption and deformation pattern of honeycomb hybrid crash box under frontal load, AIP Conf. Proc., 3077 (1): 050041, 2024.
  • 9. F. Djamaluddin, Review: deformation and optimisation crashworthiness method for foam filled structures, Latin American Journal Of Solids And Structures, 16 (07): 2019.
  • 10. F. Djamaluddin, Optimization of foam-filled crash-box under axial loading for pure electric vehicle, Results In Materials, 21: 100505, 2024.
  • 11. G. Sun, S. Li, Q. Liu, G. Li, Q. Li, Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes, Composite Structures, 152: 969–993, 2016.
  • 12. G. Sun, Z. Wang, H. Yu, Z. Gong, Q. Li, Experimental and numerical investigation into the crashworthiness of metalfoam-composite hybrid structures, Composite Structures, 209: 535–547, 2019.
  • 13. S.S. Sharma, S. Yadav, A. Joshi, A. Goyal, R. Khatri, Application of metallic foam in vehicle structure: A review, Materials Today: Proceedings, 63: 347–353, 2022.
  • 14. O. Tripathi, D.P. Singh, V.K. Dwivedi, M. Agarwal, A focused review on aluminum metallic foam: Processing, properties, and applications, Materials Today: Proceedings, 47 (19): 6622–6627, 2021.
  • 15. İ. Yavuz, M.S. Başpınar, H. Bayrakçeken, Metalik köpük malzemelerin taşıtlarda kullanımı, Electronic Journal Of Vehicle Technologies, 3: 43–51, 2009.
  • 16. S. Uslu and M.B. Çelik, Using of metallic foams in the automotive industry, 1st International Symposium on Light Alloys and Composite Materials, 22-24 March 2018, Karabük.
  • 17. R. Rajendran, K.P. Sai, B. Chandrasekar, B. Gokhale, S. Basu, Impact energy absorption of aluminium foam fitted AISI 304L stainless steel tube, Materials & Design, 30 (5): 1777–1784, 2009.
  • 18. M. Altın and H.S. Yücesu, Farklı geometrik yapılardaki çarpışma kutularının içerisine yerleştirilen alüminyum köpük malzemenin enerji sönümleme kapasitesi üzerine etkisinin incelenmesi, Politeknik Dergisi, 22 (1): 141–148, 2019.
  • 19. G. Wang, Y. Zhang, Z. Zheng, H. Chen, J. Yu, Crashworthiness design and impact tests of aluminum foam-filled crash boxes, Thin-Walled Structures, 180: 109937, 2022.
  • 20. G. Valente, H. Ghasemnejad, S. Srimanosaowapak, J.W. Watson, Advancement in design and failure analysis of aluminium foam-filled honeycomb crash absorbers, Applied Composite Materials, 30: 705-726, 2023.

Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box

Year 2024, Volume: 5 Issue: 2, 118 - 129, 30.08.2024
https://doi.org/10.52795/mateca.1520669

Abstract

Increasing population worldwide and the resulting increasing number of automobiles increase the risk of traffic accidents. Due to this increasing risk, automobile manufacturers take various safety measures to protect drivers and passengers in case of possible accidents. Crash boxes are one of the passive safety system elements that are the first to absorb the impact in the event of a front or rear impact accident, absorbing the resulting deformation energy and ensuring that it is transmitted into the car at the least possible level. Therefore, increasing the energy absorption ability of crash boxes is an extremely important issue. In this study, it was aimed to increase the energy absorption capabilities by placing aluminum foam based materials produced by using the powder metallurgy method using three different aluminum alloys (Al2024, Al5083, and Al6061) inside the crash boxes, which are normally manufactured as hollow. In addition, the produced aluminum foams were compared in terms of pore sizes with SEM images. It can be said that Al6061 is the most ideal material among the alloys used in terms of pore structure and homogeneity. On the other hand, Al6061 alloys produced the greatest damped energy value within the parameters of the investigation, 221.711 J. This value was 169.556 J for Al2024 alloy and 214.101 J for Al5083 alloy. As a result, it was concluded that the amount of energy absorption can be increased by about 4-5 times by using metallic foams produced using aluminum materials compared to the empty crash box.

Supporting Institution

Karabük University

Project Number

FYL-2020-2238

Thanks

This study was supported by Karabük University Scientific Research Project numbered FYL-2020-2238.

References

  • 1. I. Kusyairi, H.M. Himawan, M.A. Choiron, Y.S. Irawan, Effects of origami pattern crash box and rectangular pattern crash box on the modelling of MPV car structure on deformation, Journal Of Energy, Mechanical, Material, And Manufacturing Engineering, 3(2): 61–68, 2018.
  • 2. N.A.Z. Abdullah, M.S.M. Sani, M.S. Salwani, N.A. Husain, A review on crashworthiness studies of crash box structure, Thin-Walled Structures, 153: 106795, 2020.
  • 3. N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial ımpact loading, Procedia Engineering, 173: 1390–1398, 2017.
  • 4. M.A. Choiron and M.A. Yaqin, Optimization of two segments crash box with rubber joint using response surface methodology, AIP Conference Proceedings, 2278 (1): 020012, 2020.
  • 5. N.N. Hussain, S.P. Regalla, A. Jusuf, Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material, Proceedings Of The Institution Of Mechanical Engineers, Part L: Journal Of Materials: Design And Applications, 235 (1): 114–130, 2020.
  • 6. A. Pavlovic and C. Fragassa, Investigating the crash-box-structure’s ability to absorb energy, International Journal Of Crashworthiness, 2024.
  • 7. Y. Hwang and J. Han, Energy absorption optimisation of an origami-shaped crash box under axial loading, International Journal Of Crashworthiness, 29 (1): 132–141, 2024.
  • 8. F.A.F. Astuti, M.A. Choiron, A. Purnowidodo, Y.S. Irawan, Energy absorption and deformation pattern of honeycomb hybrid crash box under frontal load, AIP Conf. Proc., 3077 (1): 050041, 2024.
  • 9. F. Djamaluddin, Review: deformation and optimisation crashworthiness method for foam filled structures, Latin American Journal Of Solids And Structures, 16 (07): 2019.
  • 10. F. Djamaluddin, Optimization of foam-filled crash-box under axial loading for pure electric vehicle, Results In Materials, 21: 100505, 2024.
  • 11. G. Sun, S. Li, Q. Liu, G. Li, Q. Li, Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes, Composite Structures, 152: 969–993, 2016.
  • 12. G. Sun, Z. Wang, H. Yu, Z. Gong, Q. Li, Experimental and numerical investigation into the crashworthiness of metalfoam-composite hybrid structures, Composite Structures, 209: 535–547, 2019.
  • 13. S.S. Sharma, S. Yadav, A. Joshi, A. Goyal, R. Khatri, Application of metallic foam in vehicle structure: A review, Materials Today: Proceedings, 63: 347–353, 2022.
  • 14. O. Tripathi, D.P. Singh, V.K. Dwivedi, M. Agarwal, A focused review on aluminum metallic foam: Processing, properties, and applications, Materials Today: Proceedings, 47 (19): 6622–6627, 2021.
  • 15. İ. Yavuz, M.S. Başpınar, H. Bayrakçeken, Metalik köpük malzemelerin taşıtlarda kullanımı, Electronic Journal Of Vehicle Technologies, 3: 43–51, 2009.
  • 16. S. Uslu and M.B. Çelik, Using of metallic foams in the automotive industry, 1st International Symposium on Light Alloys and Composite Materials, 22-24 March 2018, Karabük.
  • 17. R. Rajendran, K.P. Sai, B. Chandrasekar, B. Gokhale, S. Basu, Impact energy absorption of aluminium foam fitted AISI 304L stainless steel tube, Materials & Design, 30 (5): 1777–1784, 2009.
  • 18. M. Altın and H.S. Yücesu, Farklı geometrik yapılardaki çarpışma kutularının içerisine yerleştirilen alüminyum köpük malzemenin enerji sönümleme kapasitesi üzerine etkisinin incelenmesi, Politeknik Dergisi, 22 (1): 141–148, 2019.
  • 19. G. Wang, Y. Zhang, Z. Zheng, H. Chen, J. Yu, Crashworthiness design and impact tests of aluminum foam-filled crash boxes, Thin-Walled Structures, 180: 109937, 2022.
  • 20. G. Valente, H. Ghasemnejad, S. Srimanosaowapak, J.W. Watson, Advancement in design and failure analysis of aluminium foam-filled honeycomb crash absorbers, Applied Composite Materials, 30: 705-726, 2023.
There are 20 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Research Articles
Authors

Samet Uslu 0000-0001-9118-5108

Batuhan Kocaoğlu This is me 0000-0001-6805-1742

Project Number FYL-2020-2238
Early Pub Date August 23, 2024
Publication Date August 30, 2024
Submission Date July 22, 2024
Acceptance Date August 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Uslu, S., & Kocaoğlu, B. (2024). Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box. Manufacturing Technologies and Applications, 5(2), 118-129. https://doi.org/10.52795/mateca.1520669
AMA Uslu S, Kocaoğlu B. Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box. MATECA. August 2024;5(2):118-129. doi:10.52795/mateca.1520669
Chicago Uslu, Samet, and Batuhan Kocaoğlu. “Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box”. Manufacturing Technologies and Applications 5, no. 2 (August 2024): 118-29. https://doi.org/10.52795/mateca.1520669.
EndNote Uslu S, Kocaoğlu B (August 1, 2024) Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box. Manufacturing Technologies and Applications 5 2 118–129.
IEEE S. Uslu and B. Kocaoğlu, “Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box”, MATECA, vol. 5, no. 2, pp. 118–129, 2024, doi: 10.52795/mateca.1520669.
ISNAD Uslu, Samet - Kocaoğlu, Batuhan. “Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box”. Manufacturing Technologies and Applications 5/2 (August 2024), 118-129. https://doi.org/10.52795/mateca.1520669.
JAMA Uslu S, Kocaoğlu B. Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box. MATECA. 2024;5:118–129.
MLA Uslu, Samet and Batuhan Kocaoğlu. “Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box”. Manufacturing Technologies and Applications, vol. 5, no. 2, 2024, pp. 118-29, doi:10.52795/mateca.1520669.
Vancouver Uslu S, Kocaoğlu B. Comparison of Energy Absorptive Capacities of Different Aluminum Alloy Foams Placed Inside the Crash Box. MATECA. 2024;5(2):118-29.