Research Article
BibTex RIS Cite

Çekme Performansı için 3B Baskılı Auxetic Yapıların Optimizasyonu: Hücre Boyutu ve Şekil Yönelimi Üzerine Taguchi Yönteminin Uygulaması

Year 2024, Volume: 5 Issue: 3, 284 - 294
https://doi.org/10.52795/mateca.1576416

Abstract

Auxetic yapılar, negatif Poisson oranı sergileyen benzersiz mekanik özellikleriyle karakterize edilir; bu, geleneksel malzemelerin aksine, gerildiklerinde yanal olarak genişledikleri ve sıkıştırıldıklarında yanal olarak büzüldükleri anlamına gelir. Bu ayırt edici davranış, auxetic malzemelerin gelişmiş enerji emilimi, kayma direnci ve çentik direnci gibi gelişmiş mekanik özelliklere sahip olmasını sağlar. Bu çalışma, şekil yöneliminin ve hücre boyutunun çekme mekanik özellikleri üzerindeki etkisini ve optimizasyonunu inceleyen az sayıdaki araştırmadan biri olması nedeniyle özel bir yenilik taşımaktadır. Bu nedenle, maskeli stereolitografi (MSLA) yazıcısı kullanılarak üç farklı hücre boyutu (3 mm, 2 mm, 1.5 mm) ve üç farklı şekil oryantasyonu (0º, 45º, 90º) kullanılarak toplam dokuz farklı numune üretilmiş ve bunların gerilme mekanik özellikleri incelenmiştir. En iyi hücre boyutu ve şekil yönelimi Taguchi'nin maksimum sinyal-gürültü oranı (S/N) analizi ile belirlenmiş ve veriler Varyans Analizi (ANOVA) testi ile analiz edilmiştir. Özellikle, 1.5 mm'lik bir hücre boyutu ve 90º'lik bir şekil yöneliminin, 348.44 N'lik maksimum kırılma kuvveti ve 224.91 J'lik enerji emilimi ile en iyi performansı sağladığı bulunmuştur. Bu araştırma, gelişmiş mekanik performans için 3B baskının optimizasyonuna ve eklemeli imalat alanına katkıda bulunmaktadır.

References

  • W. Jiang, X. Ren, S.L. Wang, X.G. Zhang, X.Y. Zhang, C. Luo, Y.M. Xie, F. Scarpa, A. Alderson, K.E. Evans, Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review, Composites Part B: Engineering, 235: 109733, 2022.
  • J. Fan, L. Zhang, S. Wei, Z. Zhang, S.-K. Choi, B. Song, Y. Shi, A review of additive manufacturing of metamaterials and developing trends, Materials Today, 50: 303–328, 2021.
  • N.K. Choudhry, B. Panda, U.S. Dixit, Energy Absorption Characteristics of Fused Deposition Modeling 3D Printed Auxetic Re-entrant Structures: A Review, J. of Materi Eng and Perform, 32: 8981-8999, 2023.
  • O. Duncan, T. Shepherd, C. Moroney, L. Foster, P.D. Venkatraman, K. Winwood, T. Allen, A. Alderson, Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8(6): 941, 2018.
  • Y. Kim, K.H. Son, J.W. Lee, Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices, Materials, 14: 6821, 2021.
  • H. Nguyễn, R. Fangueiro, F. Ferreira, Q. Nguyễn. Auxetic Materials and Structures for Potential Defense Applications: An Overview and Recent Developments, Textile Research Journal, 93(23-24):5268-5306, 2023.
  • K. Günaydın, O. Gülcan, H.S. Türkmen, Experimental and numerical crushing performance of crash boxes filled with re-entrant and anti-tetrachiral auxetic structures, International Journal of Crashworthiness, 28(5) 649-663, 2022.
  • J. Zhang, G. Lu, Z. You, Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Composites Part B: Engineering, 201: 108340, 2020.
  • A. Joseph, V. Mahesh, D. Harursampath, On the application of additive manufacturing methods for auxetic structures: a review, Adv. Manuf, 9: 342-368, 2021.
  • M. Balan P, J. Mertens A, M.V.A.R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Materials Today Communications 34: 105285, 2023.
  • B. Li, W. Liang, L. Zhang, F. Ren, F. Xuan, TPU/CNTs flexible strain sensor with auxetic structure via a novel hybrid manufacturing process of fused deposition modeling 3D printing and ultrasonic cavitation-enabled treatment, Sensors and Actuators A: Physical, 340: 113526, 2022.
  • D. Photiou, S. Avraam, F. Sillani, F. Verga, O. Jay, L. Papadakis, Experimental and Numerical Analysis of 3D Printed Polymer Tetra-Petal Auxetic Structures Under Compression, Applied Sciences, 11(21): 10362, 2021.
  • S. Shukla, B.K. Behera, R.K. Mishra, M. Tichý, V. Kolář, M. Müller, Modelling of Auxetic Woven Structures for Composite Reinforcement, Textiles, 2(1): 1-15, 2022.
  • D. Tahir, M. Zhang, H. Hu, Auxetic Materials for Personal Protection: A Review, Physica Status Solidi (b), 259(12): 2200324, 2022.
  • J.H. Park, H.-J. Park, S.J. Tucker, S.K. Rutledge, L. Wang, M.E. Davis, S.J. Hollister, 3D Printing of Poly-ε-Caprolactone (PCL) Auxetic Implants with Advanced Performance for Large Volume Soft Tissue Engineering, Advanced Functional Materials, 33(24): 2215220, 2023.
  • Y. Xue, Q. Shao, J. Mu, X. Ji, X. Wang, Compressive Mechanical Behavior of Additively Manufactured 3D Auxetic Metamaterials with Enhanced Strength, Physica Status Solidi (RRL) – Rapid Research Letters, 18(2): 2300226, 2024.
  • N.V. Viet, W. Zaki, On exploration of directional extreme mechanical attributes and energy absorption of bending-dominated and buckling-induced negative Poisson’s ratio metamaterials, Composite Structures, 349-350: 118460, 2024.
  • X. Wu, Y. Su, J. Shi, In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials, Composite Structures, 247: 112451, 2020.
  • N. Ben Ali, M. Khlif, D. Hammami, C. Bradai, Experimental optimization of process parameters on mechanical properties and the layers adhesion of 3D printed parts, Journal of Applied Polymer Science, 139(9): 51706, 2022.
  • A. Temiz, The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46: 121, 2024.
  • S. Shanmugam, V. Jayaraman, M. Balasubramanian, K. Swaminathan, Optimization of culture parameters for hyper laccase production by Trichoderma asperellum by Taguchi design experiment using L-18 orthogonal array, Malaya Journal of Biosciences, 1(4): 214-225, 2014.
  • S. Demir, A. Temiz, F. Pehlivan, The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi, Polymer Engineering & Science, 64(3): 1209-1221, 2024.
  • F. Pehlivan, Enhancing tensile properties of polymer-based triply periodic minimal surface metamaterial structures: Investigating the impact of post-curing time and layer thickness via response surface methodology, Polymer Engineering & Science, 0: 1-14, 2024.
  • A. Temiz, F. Pehlivan, F.H. Öztürk, S. Demir, Compression behavior of sheet-network triply periodic minimal surface metamaterials as a function of density grading, Journal of Reinforced Plastics and Composites, 43(23-24): 1430-1443, 2024.
  • F. Pehlivan, F.H. Öztürk, S. Demir, A. Temiz, Optimization of functionally graded solid-network TPMS meta-biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, 157: 106609, 2024. L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, International Journal of Solids and Structures, 69-70: 475-490, 2015.
  • J. Shen, K. Liu, Q. Zeng, J. Ge, Z. Dong, J. Liang, Design and mechanical property studies of 3D re-entrant lattice auxetic structure, Aerospace Science and Technology, 118: 106998, 2021.
  • H. Khan, M. ur R. Siddiqi, S. Saher, R. Muhammad, M.S. Rehan, Tensile properties of 3D-printed PLA prismatic cellular structures: an experimental investigation, Int J Adv Manuf Technol, 134: 4399-4410, 2024.
  • F.H. Öztürk, Optimization of adherend thickness and overlap length on failure load of bonded 3D printed PETG parts using response surface method, Rapid Prototyping Journal, 30(8): 1579-1591, 2024.
  • S. Simsek, S. Uslu, Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM), Fuel, 270: 117496, 2020.
  • P. Wang, Y. Bian, F. Yang, H. Fan, B. Zheng, Mechanical properties and energy absorption of FCC lattice structures with different orientation angles, Acta Mech, 231: 3129-3144, 2020.
  • A. Temiz, The Effects of Process Parameters on Tensile Characteristics and Printing Time for Masked Stereolithography Components, Analyzed Using the Response Surface Method, J. of Materi Eng and Perform, 33: 9356–9365, 2024.
  • M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, International Journal of Mechanical Sciences, 159: 43-57, 2019.

Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation

Year 2024, Volume: 5 Issue: 3, 284 - 294
https://doi.org/10.52795/mateca.1576416

Abstract

Auxetic structures are characterized by their unique mechanical property of exhibiting a negative Poisson's ratio, which means they expand laterally when stretched and contract laterally when compressed, contrary to conventional materials. This distinctive behavior enables auxetic materials to possess enhanced mechanical properties such as improved energy absorption, shear resistance, and indentation resistance. This study is of special novelty as it is one of the few investigations examining the effect and optimization of shape orientation and cell size on tensile mechanical properties. For this reason, a total of nine different specimens were produced using three different cell sizes (3 mm, 2 mm, 1.5 mm) and three different shape orientations (0º, 45º, 90º) using a masked stereolithography (MSLA) printer, and their tension mechanical properties were investigated. The best cell size and shape orientation were determined by Taguchi's maximum signal-to-noise ratio (S/N) analysis, and the data was analyzed with the Analysis of Variance (ANOVA) test. Specifically, a cell size of 1.5 mm and a shape orientation of 90º delivered the best performance, with a maximum fracture force of 348.44 N and energy absorption of 224.91 J. This research contributes to optimizing 3D printing for improved mechanical performance and to the field of additive manufacturing.

References

  • W. Jiang, X. Ren, S.L. Wang, X.G. Zhang, X.Y. Zhang, C. Luo, Y.M. Xie, F. Scarpa, A. Alderson, K.E. Evans, Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review, Composites Part B: Engineering, 235: 109733, 2022.
  • J. Fan, L. Zhang, S. Wei, Z. Zhang, S.-K. Choi, B. Song, Y. Shi, A review of additive manufacturing of metamaterials and developing trends, Materials Today, 50: 303–328, 2021.
  • N.K. Choudhry, B. Panda, U.S. Dixit, Energy Absorption Characteristics of Fused Deposition Modeling 3D Printed Auxetic Re-entrant Structures: A Review, J. of Materi Eng and Perform, 32: 8981-8999, 2023.
  • O. Duncan, T. Shepherd, C. Moroney, L. Foster, P.D. Venkatraman, K. Winwood, T. Allen, A. Alderson, Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8(6): 941, 2018.
  • Y. Kim, K.H. Son, J.W. Lee, Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices, Materials, 14: 6821, 2021.
  • H. Nguyễn, R. Fangueiro, F. Ferreira, Q. Nguyễn. Auxetic Materials and Structures for Potential Defense Applications: An Overview and Recent Developments, Textile Research Journal, 93(23-24):5268-5306, 2023.
  • K. Günaydın, O. Gülcan, H.S. Türkmen, Experimental and numerical crushing performance of crash boxes filled with re-entrant and anti-tetrachiral auxetic structures, International Journal of Crashworthiness, 28(5) 649-663, 2022.
  • J. Zhang, G. Lu, Z. You, Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Composites Part B: Engineering, 201: 108340, 2020.
  • A. Joseph, V. Mahesh, D. Harursampath, On the application of additive manufacturing methods for auxetic structures: a review, Adv. Manuf, 9: 342-368, 2021.
  • M. Balan P, J. Mertens A, M.V.A.R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Materials Today Communications 34: 105285, 2023.
  • B. Li, W. Liang, L. Zhang, F. Ren, F. Xuan, TPU/CNTs flexible strain sensor with auxetic structure via a novel hybrid manufacturing process of fused deposition modeling 3D printing and ultrasonic cavitation-enabled treatment, Sensors and Actuators A: Physical, 340: 113526, 2022.
  • D. Photiou, S. Avraam, F. Sillani, F. Verga, O. Jay, L. Papadakis, Experimental and Numerical Analysis of 3D Printed Polymer Tetra-Petal Auxetic Structures Under Compression, Applied Sciences, 11(21): 10362, 2021.
  • S. Shukla, B.K. Behera, R.K. Mishra, M. Tichý, V. Kolář, M. Müller, Modelling of Auxetic Woven Structures for Composite Reinforcement, Textiles, 2(1): 1-15, 2022.
  • D. Tahir, M. Zhang, H. Hu, Auxetic Materials for Personal Protection: A Review, Physica Status Solidi (b), 259(12): 2200324, 2022.
  • J.H. Park, H.-J. Park, S.J. Tucker, S.K. Rutledge, L. Wang, M.E. Davis, S.J. Hollister, 3D Printing of Poly-ε-Caprolactone (PCL) Auxetic Implants with Advanced Performance for Large Volume Soft Tissue Engineering, Advanced Functional Materials, 33(24): 2215220, 2023.
  • Y. Xue, Q. Shao, J. Mu, X. Ji, X. Wang, Compressive Mechanical Behavior of Additively Manufactured 3D Auxetic Metamaterials with Enhanced Strength, Physica Status Solidi (RRL) – Rapid Research Letters, 18(2): 2300226, 2024.
  • N.V. Viet, W. Zaki, On exploration of directional extreme mechanical attributes and energy absorption of bending-dominated and buckling-induced negative Poisson’s ratio metamaterials, Composite Structures, 349-350: 118460, 2024.
  • X. Wu, Y. Su, J. Shi, In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials, Composite Structures, 247: 112451, 2020.
  • N. Ben Ali, M. Khlif, D. Hammami, C. Bradai, Experimental optimization of process parameters on mechanical properties and the layers adhesion of 3D printed parts, Journal of Applied Polymer Science, 139(9): 51706, 2022.
  • A. Temiz, The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46: 121, 2024.
  • S. Shanmugam, V. Jayaraman, M. Balasubramanian, K. Swaminathan, Optimization of culture parameters for hyper laccase production by Trichoderma asperellum by Taguchi design experiment using L-18 orthogonal array, Malaya Journal of Biosciences, 1(4): 214-225, 2014.
  • S. Demir, A. Temiz, F. Pehlivan, The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi, Polymer Engineering & Science, 64(3): 1209-1221, 2024.
  • F. Pehlivan, Enhancing tensile properties of polymer-based triply periodic minimal surface metamaterial structures: Investigating the impact of post-curing time and layer thickness via response surface methodology, Polymer Engineering & Science, 0: 1-14, 2024.
  • A. Temiz, F. Pehlivan, F.H. Öztürk, S. Demir, Compression behavior of sheet-network triply periodic minimal surface metamaterials as a function of density grading, Journal of Reinforced Plastics and Composites, 43(23-24): 1430-1443, 2024.
  • F. Pehlivan, F.H. Öztürk, S. Demir, A. Temiz, Optimization of functionally graded solid-network TPMS meta-biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, 157: 106609, 2024. L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, International Journal of Solids and Structures, 69-70: 475-490, 2015.
  • J. Shen, K. Liu, Q. Zeng, J. Ge, Z. Dong, J. Liang, Design and mechanical property studies of 3D re-entrant lattice auxetic structure, Aerospace Science and Technology, 118: 106998, 2021.
  • H. Khan, M. ur R. Siddiqi, S. Saher, R. Muhammad, M.S. Rehan, Tensile properties of 3D-printed PLA prismatic cellular structures: an experimental investigation, Int J Adv Manuf Technol, 134: 4399-4410, 2024.
  • F.H. Öztürk, Optimization of adherend thickness and overlap length on failure load of bonded 3D printed PETG parts using response surface method, Rapid Prototyping Journal, 30(8): 1579-1591, 2024.
  • S. Simsek, S. Uslu, Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM), Fuel, 270: 117496, 2020.
  • P. Wang, Y. Bian, F. Yang, H. Fan, B. Zheng, Mechanical properties and energy absorption of FCC lattice structures with different orientation angles, Acta Mech, 231: 3129-3144, 2020.
  • A. Temiz, The Effects of Process Parameters on Tensile Characteristics and Printing Time for Masked Stereolithography Components, Analyzed Using the Response Surface Method, J. of Materi Eng and Perform, 33: 9356–9365, 2024.
  • M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, International Journal of Mechanical Sciences, 159: 43-57, 2019.
There are 32 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Additive Manufacturing
Journal Section Research Articles
Authors

Fatih Pehlivan 0000-0003-2675-6124

Early Pub Date December 30, 2024
Publication Date
Submission Date October 30, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

APA Pehlivan, F. (2024). Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation. Manufacturing Technologies and Applications, 5(3), 284-294. https://doi.org/10.52795/mateca.1576416
AMA Pehlivan F. Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation. MATECA. December 2024;5(3):284-294. doi:10.52795/mateca.1576416
Chicago Pehlivan, Fatih. “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation”. Manufacturing Technologies and Applications 5, no. 3 (December 2024): 284-94. https://doi.org/10.52795/mateca.1576416.
EndNote Pehlivan F (December 1, 2024) Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation. Manufacturing Technologies and Applications 5 3 284–294.
IEEE F. Pehlivan, “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation”, MATECA, vol. 5, no. 3, pp. 284–294, 2024, doi: 10.52795/mateca.1576416.
ISNAD Pehlivan, Fatih. “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation”. Manufacturing Technologies and Applications 5/3 (December 2024), 284-294. https://doi.org/10.52795/mateca.1576416.
JAMA Pehlivan F. Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation. MATECA. 2024;5:284–294.
MLA Pehlivan, Fatih. “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation”. Manufacturing Technologies and Applications, vol. 5, no. 3, 2024, pp. 284-9, doi:10.52795/mateca.1576416.
Vancouver Pehlivan F. Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation. MATECA. 2024;5(3):284-9.