Research Article
BibTex RIS Cite

Extrusion-Based Metal Additive Manufacturing (EBAM): Technology, Advantages and Limitations

Year 2024, Volume: 5 Issue: 3, 264 - 275
https://doi.org/10.52795/mateca.1580405

Abstract

This article discusses Extrusion-Based Metal Additive Manufacturing (EBAM) in detail. EBAM is an innovative 3D printing technology that utilizes polymer-metal mixed filaments to produce metal components through layer-by-layer joining. The paper comprehensively examines the basic operating principles of EBAM, the material bonding mechanisms, and the sintering processes required to obtain full-density metal parts. The advantages of the method, such as low equipment cost and the capacity to produce complex geometries, are compared with other metal additive manufacturing techniques such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In addition to that, the challenges of the EBAM method, such as limited material options, low mechanical properties, and porosity, are also analyzed. The study evaluates the potential of EBAM, the innovations that introduces to manufacturing processes and future research areas, and provides recommendations for its more widespread and effective use in different sectors. In conclusion, the literature review shows that the EBAM method has the potential to be a cost-effective substitute, but has additional challenges in the production process.

Project Number

FYL-2023-8603

References

  • ASTM ISO/ASTM 52900, Standard terminology for additive manufacturing – general principles – terminology, ASTM International, 2015.
  • K. Rane, M. Strano, A comprehensive review of extrusion based additive manufacturing processes for rapid production of metallic and ceramic parts, Additive Manufacturing, 7: 155–173, 2019.
  • S.S. Crump, Apparatus and method for creating three-dimensional objects, US5121329A, 1992.
  • C. Lieberwirth, A. Harder, H. Seitz, Extrusion based additive manufacturing of metal parts, Journal of Mechanics and Automation 7(2): 79-83, 2017.
  • N. Top, I. Sahin, S.C. Mangla, M.D. Sezer, Y. Kazancoglu, Towards sustainable production for transition to additive manufacturing: acase study in the manufacturing industry, International Journal of Production Research, 61(13): 4450-4471, 2023.
  • W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69: 65-89, 2015.
  • A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges, Applied Sciences, 11(3): 1213, 2021.
  • T. Duda, L.V. Raghavan, 3D metal printing technology: the need to re-inventdesign practice, Ai & Society, 33(2): 241-252, 2018.
  • S.I. Roshchupkin, V.I. Golovin, A.G. Kolesov, A.Y. Tarakhovskiy, Extruder for the production of metal-polymer filament for additive Technologies, IOP Conference Series: Materials Science and Engineering, 971(2): 022009, 2020.
  • R.C. Pack, B.G. Compton, Material extrusion additive manufacturing of metal powder-based inks enabled by Carrageenan rheology modifer, Advanced Engineering Materials, 23(2): 2000880, 2021.
  • C. Suwanpreecha, A. Manonukul, A Review on Material Extrusion AdditiveManufacturing of Metal and How It Compares with Metal Injection Moulding, Metals, 12(3): 4293, 2022, doi:10.3390/met12030429.
  • B. Deboer, F. Diba, S.A. Hosseini, Design and development of a cost calculator for additive manufacturing, Proceedings of the Canadian Society for Mechanical Engineering International Congress, Charlottetown, Kanada, 27-30/06, 2021.
  • G. Wu, N.A. Langrana, R. Sadanji, S. Danforth, Solid freeform fabrication of metal components using fused deposition of metals, Materials & Design, 23(1): 97–105, 2002.
  • J. Gonzalez-Gutierrez, D. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives, Materials, 11(5): 840, 2018. M. Quarto, C. Giardini, Additive manufacturing of metal filament: when it can replace metal injection moulding, Progress in Additive Manufacturing, 8(3): 561-570, 2023.
  • L. Cherdo, The Best Metal 3D Printers in 2020, https://www.aniwaa.com/best-of/3d-printers/best-metal-3d-printer/, 08.01.2021.
  • M. Sæterbø, W. D. Solvang, Evaluating the cost competitiveness of metal additive manufacturing – A case study with metal material extrusion, CIRP Journal of Manufacturing Science and Technology, 45: 113-124, 2023.
  • T. Rosnitschek, F. Hueter, B. Alber-Laukant, FEM-based modelling of elasticproperties and anisotropic sinter Shrinkage of metal EAM, International Journal of Simulation Modelling, 19(2): 197-208, 2020.
  • M. Strano, K. Rane, F. Briatico Vangosa, L. Di Landro, Extrusion of metal powder-polymer mixtures: Meltarheology and process stability, Journal of Materials Processing Technology, 273: 116250, 2019.
  • T. Wohlers, Desktop metal: a rising star of metal AM targets speed, cost and high-volume production, Metal AM, 3(2): 89–94, 2017.
  • M. Strano, K. Rane, M.A. Farid, V. Mussi, V. Zaragoza, M. Monno, Extrusion-based additive manufacturing of forming and molding tools, The International Journal of Advanced Manufacturing Technology, 117(7): 2059-2071, 2021.
  • P. Singh, V.K. Balla, A. Tofangchi, S.V. Atre, K. H. Kate, Printability studies of Ti-6Al-4V by metal fused flament fabrication (MF3), International Journal of Refractory Metals and Hard Materials, 91: 15249, 2020.
  • D.Y. Park, G.M. Lee, Y.S. Kwon, Y.J. Oh, S. Lee, M.S. Jeong, S.J. Park, Investigation of powder size efects on sintering of powder injection moulded 17–4PH stainless steel, Powder Metallurgy, 60(2): 139–148, 2017.
  • Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, P. Felfer, Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel, Additive Manufacturing, 30: 100861, 2019.
  • T. Rosnitschek, An automated open-source approach for debinding simulation in metal extrusion additive manufacturing, Designs, (5)1: 2, 2021.
  • B. Liu, Y.X. Wang, Z.W. Lin, T. Zhang, Creating metal parts by fused deposition modeling and sintering, Materials Letters, 263: 127252, 2020.
  • BASF, User Guidelines for 3D Printing Metal Parts, https://move.forward-am.com/hubfs/AES%20Documentation/Metal%20Filaments/Ultrafuse_metal_User_Guideline.pdf, 03.11.2024.
  • M. Mousapour, M. Salmi, L. Klemettinen, J. Partanen, Feasibility study of producing multi-metal parts by fused filament fabrication (FFF) technique, Journal of Manufacturing Processes, 61: 438-446, 2021.
  • J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C Kukla, C. Holzer, Tensile properties of sintered 17 4PH stainless steel fabricated by material extrusion additive manufacturing, Materials Letters, 248: 165-168, 2019.
  • BASF, Debinding Simulation Guidelines for 3D Printed Parts using Ultrafuse® 316L, https://forward-am.com/wp-content/uploads/2021/01/Debinding-and-Simulation-Guidelines.pdf, 03.11.2024. J. Capus, Making steel powders for PM and AM, Metal Powder Report, 75(3): 148–150, 2020.
  • S.C. Altıparmak, V.A. Yardley, Z. Shi, J. Lin, Extrusion-based additive manufacturing Technologies: State of Art and future perspectives, Journal of Manufacturing Processes, 83: 607-539, 2022.
  • O. Miclette, R. Côté, V. Demers, V. Brailovski, Material extrusion additive manufacturing of low-viscosity metallic feedstocks: Performances of the plunger-based approach, Additive Manufacturing, 60, 103252, 2022.
  • F. Cerejo, D. Gatões, M. Vieira, Optimization of metallic powder filaments for additive manufacturing extrusion (MEX), The International Journal of Advanced Manufacturing Technology, 115(7): 2449-2464, 2021.
  • E. Moritzer, C. L. Elsner, C. Schumacher, Investigation of metal-polymer composites manufactured by fused deposition modeling with regard to process parameters, Polymer Composites, 42: 6065–6079, 2021.
  • F. Meng, M. Beretta, A. Selema, P. Sergeant, J. Vleugels, F. Desplentere, E. Ferraris, Production and characterisation of filament-based Material Extrusion (MEX) additively manufactured copper parts, Procedia CIRP, 121: 234-239, 2023, doi:10.1016/j.procir.2023.09.253.
  • A.D. Akessa, W.M. Tucho, H.G. Lemu, J. Grønsund, Investigations of the Microstructure and Mechanical Properties of 17-4 PH ss Printed Using a Mark Forged Metal X, Materials, 15(19): 6898, 2022. doi:10.3390/ma15196898.
  • J. Jones, A. Vafadar, R. Hashemi, A Review of the Mechanical Properties of 17-4PH Stainless Steel Produced by Bound Powder Extrusion, Journal of Manufacturing and Materials Processing, 7(5): 162, 2023, doi:10.3390/jmmp7050162.
  • R. Singh, H.K. Garg, Fused deposition modeling-A state of art review and future applications, Reference Module in Materials Science and Materials Engineering, 1-20, 2016, doi:10.1016/B978-0-12-803581-8.04037-6
  • C.J.L. Perez, Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes, International Journal of Production Research, 40(12): 2865–2881, 2002.
  • M.Á. Caminero, A. Romero, J.M. Chacón, P.J. Núñez, E. García-Plaza, G.P. Rodríguez, Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: Mechanical and geometric properties, Rapid Prototyping Journal, 27(3): 583–591, 2021.
  • S. Terry, I. Fidan, K. Tantawi, Preliminary investigation into metal-material extrusion, Progress in Additive Manufacturing, 6: 133–141, 2021.
  • M. Mohammadizadeh, H. Lu, I. Fidan, K. Tantawi, A. Gupta, S. Hasanov, Z. Zhang, F. Alifui-Segbaya, A. Rennie, Mechanical and thermal analyses of Metal-PLA components fabricated by metal material extrusion, Inventions, 5(3): 44, 2020.
  • B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping Journal, 20(3): 192–204, 2014, doi:10.1108/RPJ-01-2013-0012
  • C.L. Chen, R.C. Thomson, Study on thermal expansion of intermetallics in multicomponent Al–Si alloys by high temperature X-ray diffraction, Intermetallics, 18(9): 1750–1757, 2010.
  • M. Sadaf, M. Bragaglia, L. Slemenik Perše, F. Nanni, Advancements in metal additive manufacturing: a comprehensive review of material extrusion with highly filled polymers, Journal of Manufacturing and Materials Processing, 8(1): 14, 2024.
  • B.V. Reddy, N.V. Reddy, A. Ghosh, Fused deposition modelling using direct extrusion, Virtual and Physical Prototyping, 2(1): 51–60, 2007.
  • A. Patel, M. Taufik, Extrusion-based technology in additive manufacturing: A comprehensive review, Arabian Journal for Science and Engineering, 49(2): 1309–1342, 2024, doi:10.1007/s13369-022-07539-1
  • I. Campbell, T. Wohlers, Markforged: taking a different approach to metal additive manufacturing Metal AM, 3: 113-116, 2017.
  • M. Armstrong, H. Mehrabi, N. Naveed, An overview of modern metal additive manufacturing technology, Journal of Manufacturing Processes, 84: 1001-1029, 2022, doi:10.1016/j.jmapro.2022.10.060
  • Y. Z. Zhang, S. Bai, M. Riede, E. Garratt. A. Roch, A comprehensive study on fused filament fabrication of Ti-6Al-4V structures, Additive Manufacturing, 34: 101256, 2020.
  • W. Lengauer, I. Duretek, V. Schwarz, C. Kukla, M. Kitzmantel, E. Neubauer, V. Morrison, Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts, Euro PM2018 Congress & Exhibition Euro PM2018 Proceedings, 14-18.10.2018, Bilbao, Spain.
  • H. Ramazani, A. Kami, A, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review, Progress in Additive Manufacturing, 7(4): 609-626, 2022, doi:10.1007/s40964-021-00250-x
  • L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, X. Li, Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system, Materials, 10(3): 305, 2017.
  • S. Hong, C. Sanchez, H. Du, N. Kim, Fabrication of 3D printed metal structures by use of high-viscosity cu paste and a screw extruder, Journal of Electronic Materials, 44:836-841, 2015.
  • E. García Plaza, P.J. N. López, M A. C. Torija, J. M. C. Muñoz, Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion, Polymers, 11(10): 1581, 2019.
  • H. Kang, R. Kitsomboonloha, J. Jang, V. Subramanian, High‐performance printed transistors realized using femtoliter gravure‐printed sub‐10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers, Advanced Materials, 24(22): 3065, 2012.
  • D. Godec, S. Cano, C. Holzer, J. Gonzalez-Gutierrez, Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel, Materials, 13(3): 774, 2020.
  • J.B. Li, Z.G. Xie, X.H. Zhang, Q.G. Zeng, H.J. Liu, Study of metal powder extrusion and accumulating rapid prototyping, Key Engineering Materials, 443: 81-86, 2010.
  • T. Kurose, Y. Abe, M.V. Santos, Y. Kanaya, A. Ishigami, S. Tanaka, H. Ito, Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals, Materials, 13(11): 2493, 2020.
  • J.P. Li, J.R. de Wijn, C.A. Van Blitterswijk, K. de Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment, Biomaterials, 27(8): 1223-1235, 2006.
  • BASF, User Guidelines for 3D Printing Metal Parts, https://forward-am.com/wp-content/uploads/2021/04/UserGuidelines_2021_03_29.pdf, 03.11.2024.

Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar

Year 2024, Volume: 5 Issue: 3, 264 - 275
https://doi.org/10.52795/mateca.1580405

Abstract

Bu makale, Ekstrüzyon Tabanlı Metal Eklemeli İmalat (Extrusion-Based Metal Additive Manufacturning - EBAM) yöntemini ayrıntılı bir şekilde ele almaktadır. EBAM, metal bileşenlerin katman katman birleştirilmesi yoluyla üretilmesini sağlayan ve polimer-metal karışımlı filamentler kullanan yenilikçi bir 3B baskı teknolojisidir. Makalede, EBAM'ın temel çalışma prensipleri, malzeme birleştirme mekanizmaları ve tam yoğunluklu metal parçaların elde edilmesi için gerekli sinterleme süreçleri kapsamlı bir şekilde incelenmiştir. Yöntemin düşük ekipman maliyeti ve karmaşık geometriler üretme kapasitesi gibi avantajları, Seçici Lazer Ergitme (SLM) ve Elektron Işını Eritme (EBM) gibi diğer metal eklemeli imalat teknikleriyle karşılaştırılmıştır. Bununla birlikte, EBAM yönteminin sınırlı malzeme seçenekleri, düşük mekanik özellikler ve porozite gibi zorlukları da analiz edilmiştir. Çalışma, EBAM'ın potansiyelini, üretim süreçlerine getirdiği yenilikleri ve gelecekteki araştırma alanlarını değerlendirmekte; bu yöntemin farklı sektörlerde daha yaygın ve etkili bir şekilde kullanımı için öneriler sunmaktadır. Sonuç olarak yapılan literatür taramasında EBAM yönteminin maliyet etkin bir alternatif olabilme potansiyeli taşımakta ancak üretim sürecinde ek zorluklar barındırmakta olduğu görülmüştür.

Supporting Institution

Gazi Üniversitesi

Project Number

FYL-2023-8603

Thanks

Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: FYL-2023-8603). Ayrıca bu çalışmada yer alan bilgiler Mert Efe Ceylan’a ait, Prof. Dr. İsmail Şahin’in danışmanlığını yaptığı yüksek lisans tezinin bir bölümünü içermektedir.

References

  • ASTM ISO/ASTM 52900, Standard terminology for additive manufacturing – general principles – terminology, ASTM International, 2015.
  • K. Rane, M. Strano, A comprehensive review of extrusion based additive manufacturing processes for rapid production of metallic and ceramic parts, Additive Manufacturing, 7: 155–173, 2019.
  • S.S. Crump, Apparatus and method for creating three-dimensional objects, US5121329A, 1992.
  • C. Lieberwirth, A. Harder, H. Seitz, Extrusion based additive manufacturing of metal parts, Journal of Mechanics and Automation 7(2): 79-83, 2017.
  • N. Top, I. Sahin, S.C. Mangla, M.D. Sezer, Y. Kazancoglu, Towards sustainable production for transition to additive manufacturing: acase study in the manufacturing industry, International Journal of Production Research, 61(13): 4450-4471, 2023.
  • W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69: 65-89, 2015.
  • A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges, Applied Sciences, 11(3): 1213, 2021.
  • T. Duda, L.V. Raghavan, 3D metal printing technology: the need to re-inventdesign practice, Ai & Society, 33(2): 241-252, 2018.
  • S.I. Roshchupkin, V.I. Golovin, A.G. Kolesov, A.Y. Tarakhovskiy, Extruder for the production of metal-polymer filament for additive Technologies, IOP Conference Series: Materials Science and Engineering, 971(2): 022009, 2020.
  • R.C. Pack, B.G. Compton, Material extrusion additive manufacturing of metal powder-based inks enabled by Carrageenan rheology modifer, Advanced Engineering Materials, 23(2): 2000880, 2021.
  • C. Suwanpreecha, A. Manonukul, A Review on Material Extrusion AdditiveManufacturing of Metal and How It Compares with Metal Injection Moulding, Metals, 12(3): 4293, 2022, doi:10.3390/met12030429.
  • B. Deboer, F. Diba, S.A. Hosseini, Design and development of a cost calculator for additive manufacturing, Proceedings of the Canadian Society for Mechanical Engineering International Congress, Charlottetown, Kanada, 27-30/06, 2021.
  • G. Wu, N.A. Langrana, R. Sadanji, S. Danforth, Solid freeform fabrication of metal components using fused deposition of metals, Materials & Design, 23(1): 97–105, 2002.
  • J. Gonzalez-Gutierrez, D. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives, Materials, 11(5): 840, 2018. M. Quarto, C. Giardini, Additive manufacturing of metal filament: when it can replace metal injection moulding, Progress in Additive Manufacturing, 8(3): 561-570, 2023.
  • L. Cherdo, The Best Metal 3D Printers in 2020, https://www.aniwaa.com/best-of/3d-printers/best-metal-3d-printer/, 08.01.2021.
  • M. Sæterbø, W. D. Solvang, Evaluating the cost competitiveness of metal additive manufacturing – A case study with metal material extrusion, CIRP Journal of Manufacturing Science and Technology, 45: 113-124, 2023.
  • T. Rosnitschek, F. Hueter, B. Alber-Laukant, FEM-based modelling of elasticproperties and anisotropic sinter Shrinkage of metal EAM, International Journal of Simulation Modelling, 19(2): 197-208, 2020.
  • M. Strano, K. Rane, F. Briatico Vangosa, L. Di Landro, Extrusion of metal powder-polymer mixtures: Meltarheology and process stability, Journal of Materials Processing Technology, 273: 116250, 2019.
  • T. Wohlers, Desktop metal: a rising star of metal AM targets speed, cost and high-volume production, Metal AM, 3(2): 89–94, 2017.
  • M. Strano, K. Rane, M.A. Farid, V. Mussi, V. Zaragoza, M. Monno, Extrusion-based additive manufacturing of forming and molding tools, The International Journal of Advanced Manufacturing Technology, 117(7): 2059-2071, 2021.
  • P. Singh, V.K. Balla, A. Tofangchi, S.V. Atre, K. H. Kate, Printability studies of Ti-6Al-4V by metal fused flament fabrication (MF3), International Journal of Refractory Metals and Hard Materials, 91: 15249, 2020.
  • D.Y. Park, G.M. Lee, Y.S. Kwon, Y.J. Oh, S. Lee, M.S. Jeong, S.J. Park, Investigation of powder size efects on sintering of powder injection moulded 17–4PH stainless steel, Powder Metallurgy, 60(2): 139–148, 2017.
  • Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, P. Felfer, Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel, Additive Manufacturing, 30: 100861, 2019.
  • T. Rosnitschek, An automated open-source approach for debinding simulation in metal extrusion additive manufacturing, Designs, (5)1: 2, 2021.
  • B. Liu, Y.X. Wang, Z.W. Lin, T. Zhang, Creating metal parts by fused deposition modeling and sintering, Materials Letters, 263: 127252, 2020.
  • BASF, User Guidelines for 3D Printing Metal Parts, https://move.forward-am.com/hubfs/AES%20Documentation/Metal%20Filaments/Ultrafuse_metal_User_Guideline.pdf, 03.11.2024.
  • M. Mousapour, M. Salmi, L. Klemettinen, J. Partanen, Feasibility study of producing multi-metal parts by fused filament fabrication (FFF) technique, Journal of Manufacturing Processes, 61: 438-446, 2021.
  • J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C Kukla, C. Holzer, Tensile properties of sintered 17 4PH stainless steel fabricated by material extrusion additive manufacturing, Materials Letters, 248: 165-168, 2019.
  • BASF, Debinding Simulation Guidelines for 3D Printed Parts using Ultrafuse® 316L, https://forward-am.com/wp-content/uploads/2021/01/Debinding-and-Simulation-Guidelines.pdf, 03.11.2024. J. Capus, Making steel powders for PM and AM, Metal Powder Report, 75(3): 148–150, 2020.
  • S.C. Altıparmak, V.A. Yardley, Z. Shi, J. Lin, Extrusion-based additive manufacturing Technologies: State of Art and future perspectives, Journal of Manufacturing Processes, 83: 607-539, 2022.
  • O. Miclette, R. Côté, V. Demers, V. Brailovski, Material extrusion additive manufacturing of low-viscosity metallic feedstocks: Performances of the plunger-based approach, Additive Manufacturing, 60, 103252, 2022.
  • F. Cerejo, D. Gatões, M. Vieira, Optimization of metallic powder filaments for additive manufacturing extrusion (MEX), The International Journal of Advanced Manufacturing Technology, 115(7): 2449-2464, 2021.
  • E. Moritzer, C. L. Elsner, C. Schumacher, Investigation of metal-polymer composites manufactured by fused deposition modeling with regard to process parameters, Polymer Composites, 42: 6065–6079, 2021.
  • F. Meng, M. Beretta, A. Selema, P. Sergeant, J. Vleugels, F. Desplentere, E. Ferraris, Production and characterisation of filament-based Material Extrusion (MEX) additively manufactured copper parts, Procedia CIRP, 121: 234-239, 2023, doi:10.1016/j.procir.2023.09.253.
  • A.D. Akessa, W.M. Tucho, H.G. Lemu, J. Grønsund, Investigations of the Microstructure and Mechanical Properties of 17-4 PH ss Printed Using a Mark Forged Metal X, Materials, 15(19): 6898, 2022. doi:10.3390/ma15196898.
  • J. Jones, A. Vafadar, R. Hashemi, A Review of the Mechanical Properties of 17-4PH Stainless Steel Produced by Bound Powder Extrusion, Journal of Manufacturing and Materials Processing, 7(5): 162, 2023, doi:10.3390/jmmp7050162.
  • R. Singh, H.K. Garg, Fused deposition modeling-A state of art review and future applications, Reference Module in Materials Science and Materials Engineering, 1-20, 2016, doi:10.1016/B978-0-12-803581-8.04037-6
  • C.J.L. Perez, Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes, International Journal of Production Research, 40(12): 2865–2881, 2002.
  • M.Á. Caminero, A. Romero, J.M. Chacón, P.J. Núñez, E. García-Plaza, G.P. Rodríguez, Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: Mechanical and geometric properties, Rapid Prototyping Journal, 27(3): 583–591, 2021.
  • S. Terry, I. Fidan, K. Tantawi, Preliminary investigation into metal-material extrusion, Progress in Additive Manufacturing, 6: 133–141, 2021.
  • M. Mohammadizadeh, H. Lu, I. Fidan, K. Tantawi, A. Gupta, S. Hasanov, Z. Zhang, F. Alifui-Segbaya, A. Rennie, Mechanical and thermal analyses of Metal-PLA components fabricated by metal material extrusion, Inventions, 5(3): 44, 2020.
  • B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping Journal, 20(3): 192–204, 2014, doi:10.1108/RPJ-01-2013-0012
  • C.L. Chen, R.C. Thomson, Study on thermal expansion of intermetallics in multicomponent Al–Si alloys by high temperature X-ray diffraction, Intermetallics, 18(9): 1750–1757, 2010.
  • M. Sadaf, M. Bragaglia, L. Slemenik Perše, F. Nanni, Advancements in metal additive manufacturing: a comprehensive review of material extrusion with highly filled polymers, Journal of Manufacturing and Materials Processing, 8(1): 14, 2024.
  • B.V. Reddy, N.V. Reddy, A. Ghosh, Fused deposition modelling using direct extrusion, Virtual and Physical Prototyping, 2(1): 51–60, 2007.
  • A. Patel, M. Taufik, Extrusion-based technology in additive manufacturing: A comprehensive review, Arabian Journal for Science and Engineering, 49(2): 1309–1342, 2024, doi:10.1007/s13369-022-07539-1
  • I. Campbell, T. Wohlers, Markforged: taking a different approach to metal additive manufacturing Metal AM, 3: 113-116, 2017.
  • M. Armstrong, H. Mehrabi, N. Naveed, An overview of modern metal additive manufacturing technology, Journal of Manufacturing Processes, 84: 1001-1029, 2022, doi:10.1016/j.jmapro.2022.10.060
  • Y. Z. Zhang, S. Bai, M. Riede, E. Garratt. A. Roch, A comprehensive study on fused filament fabrication of Ti-6Al-4V structures, Additive Manufacturing, 34: 101256, 2020.
  • W. Lengauer, I. Duretek, V. Schwarz, C. Kukla, M. Kitzmantel, E. Neubauer, V. Morrison, Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts, Euro PM2018 Congress & Exhibition Euro PM2018 Proceedings, 14-18.10.2018, Bilbao, Spain.
  • H. Ramazani, A. Kami, A, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review, Progress in Additive Manufacturing, 7(4): 609-626, 2022, doi:10.1007/s40964-021-00250-x
  • L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, X. Li, Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system, Materials, 10(3): 305, 2017.
  • S. Hong, C. Sanchez, H. Du, N. Kim, Fabrication of 3D printed metal structures by use of high-viscosity cu paste and a screw extruder, Journal of Electronic Materials, 44:836-841, 2015.
  • E. García Plaza, P.J. N. López, M A. C. Torija, J. M. C. Muñoz, Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion, Polymers, 11(10): 1581, 2019.
  • H. Kang, R. Kitsomboonloha, J. Jang, V. Subramanian, High‐performance printed transistors realized using femtoliter gravure‐printed sub‐10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers, Advanced Materials, 24(22): 3065, 2012.
  • D. Godec, S. Cano, C. Holzer, J. Gonzalez-Gutierrez, Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel, Materials, 13(3): 774, 2020.
  • J.B. Li, Z.G. Xie, X.H. Zhang, Q.G. Zeng, H.J. Liu, Study of metal powder extrusion and accumulating rapid prototyping, Key Engineering Materials, 443: 81-86, 2010.
  • T. Kurose, Y. Abe, M.V. Santos, Y. Kanaya, A. Ishigami, S. Tanaka, H. Ito, Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals, Materials, 13(11): 2493, 2020.
  • J.P. Li, J.R. de Wijn, C.A. Van Blitterswijk, K. de Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment, Biomaterials, 27(8): 1223-1235, 2006.
  • BASF, User Guidelines for 3D Printing Metal Parts, https://forward-am.com/wp-content/uploads/2021/04/UserGuidelines_2021_03_29.pdf, 03.11.2024.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies, Additive Manufacturing
Journal Section Review
Authors

Mert Efe Ceylan 0000-0002-8067-1124

İsmail Şahin 0000-0001-8566-3433

Neslihan Top 0000-0002-0771-6963

Project Number FYL-2023-8603
Early Pub Date December 30, 2024
Publication Date
Submission Date November 6, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

APA Ceylan, M. E., Şahin, İ., & Top, N. (2024). Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar. Manufacturing Technologies and Applications, 5(3), 264-275. https://doi.org/10.52795/mateca.1580405
AMA Ceylan ME, Şahin İ, Top N. Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar. MATECA. December 2024;5(3):264-275. doi:10.52795/mateca.1580405
Chicago Ceylan, Mert Efe, İsmail Şahin, and Neslihan Top. “Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar Ve Kısıtlar”. Manufacturing Technologies and Applications 5, no. 3 (December 2024): 264-75. https://doi.org/10.52795/mateca.1580405.
EndNote Ceylan ME, Şahin İ, Top N (December 1, 2024) Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar. Manufacturing Technologies and Applications 5 3 264–275.
IEEE M. E. Ceylan, İ. Şahin, and N. Top, “Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar”, MATECA, vol. 5, no. 3, pp. 264–275, 2024, doi: 10.52795/mateca.1580405.
ISNAD Ceylan, Mert Efe et al. “Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar Ve Kısıtlar”. Manufacturing Technologies and Applications 5/3 (December 2024), 264-275. https://doi.org/10.52795/mateca.1580405.
JAMA Ceylan ME, Şahin İ, Top N. Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar. MATECA. 2024;5:264–275.
MLA Ceylan, Mert Efe et al. “Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar Ve Kısıtlar”. Manufacturing Technologies and Applications, vol. 5, no. 3, 2024, pp. 264-75, doi:10.52795/mateca.1580405.
Vancouver Ceylan ME, Şahin İ, Top N. Ekstrüzyon Tabanlı Metal Eklemeli İmalat (EBAM): Teknoloji, Avantajlar ve Kısıtlar. MATECA. 2024;5(3):264-75.