Research Article
BibTex RIS Cite

Monel 400 Alaşımının Farklı Yük ve Hız Koşulları Altında Aşınma Davranışının Deneysel ve Sayısal İncelenmesi

Year 2025, Volume: 6 Issue: 2, 157 - 163, 30.08.2025
https://doi.org/10.52795/mateca.1640090

Abstract

Bu çalışmada, Monel 400 alaşımının farklı yük ve hız koşulları altındaki aşınma davranışı hem deneysel testler hem de sayısal simülasyonlar kullanılarak incelenmiştir. Aşınma testleri, sertliği ve aşındırıcılığı yüksek olan tungsten karbür (WC) bilyesi kullanılarak gerçekleştirilmiştir. Deneylerde, uygulanan yük ve hızın artmasıyla aşınma miktarında belirgin bir yükselme olduğu gözlenmiştir. Özellikle yüksek yüklerde, yüzeydeki malzeme kaybının hızlandığı ve temas yüzeyinde daha belirgin aşınma izlerinin oluştuğu tespit edilmiştir. Gerçekleştirilen simülasyonlar, Archard’ın aşınma yasasına dayalı olarak modellenmiş ve elde edilen deneysel verilerle doğrulanmıştır. Simülasyonla elde edilen sonuçlara göre aşındırıcı top yüzeyinde meydana gelen gerilme hız ve kuvvet arttıkça artmaktadır. Simülasyon sonuçları ile deneysel veriler arasında maksimum %12,30 hata oranı hesaplanmıştır ki bu, sonlu elemanlar modelinin aşınma tahminlerinde oldukça güvenilir olduğunu göstermektedir. Örneğin, 50 mm/s hızda yapılan aşınma testlerinde, yük 30 N’dan 50 N’a çıkarıldığında malzeme hacim kaybında %168,4’lük bir artış meydana gelmiştir. Bu bulgu, yükün aşınma mekanizmaları üzerindeki önemli etkisini ortaya koymaktadır. Yapılan çalışmalar, geliştirilen sonlu elemanlar modelinin aşınma deformasyonlarını hesaplamada başarılı olduğunu göstermektedir. Ayrıca, Monel 400’ün yüksek aşınma direncine sahip bir malzeme olduğunu ve özellikle aşınma direnci gerektiren uygulamalarda kullanılabileceğini destekleyen sonuçlar elde edilmiştir. Gelecekte yapılacak çalışmalar, farklı aşındırıcı malzemeler, değişen çevresel koşullar ve daha karmaşık yükleme senaryolarını içerecek şekilde genişletilebilir.

References

  • [1] U. Esgin, D. Özyürek, H. Kaya, An investigation of wear behaviors of different Monel alloys produced by powder metallurgy, in: 2016: p. 020008. https://doi.org/10.1063/1.4945963.
  • [2] M. Kukliński, A. Bartkowska, D. Przestacki, G. Kinal, Influence of Microstructure and Chemical Composition on Microhardness and Wear Properties of Laser Borided Monel 400, Materials 13 (2020) 5757. https://doi.org/10.3390/ma13245757.
  • [3] E.O. Ezugwu, J. Bonney, Y. Yamane, An overview of the machinability of aeroengine alloys, J Mater Process Technol 134 (2003) 233–253. https://doi.org/10.1016/S0924-0136(02)01042-7.
  • [4] R.S. Dutta, Corrosion aspects of Ni–Cr–Fe based and Ni–Cu based steam generator tube materials, Journal of Nuclear Materials 393 (2009) 343–349. https://doi.org/10.1016/j.jnucmat.2009.06.020.
  • [5] M. Wiciak-Pikuła, A. Felusiak-Czyryca, P. Twardowski, Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling, Sensors 20 (2020) 5798. https://doi.org/10.3390/s20205798.
  • [6] M.S. Gul, R. Demirsöz, S. Kabave Kilincarslan, R. Polat, M.H. Cetin, Effect of Impact Angle and Speed, and Weight Abrasive Concentration on AISI 1015 and 304 Steel Exposed to Erosive Wear, J Mater Eng Perform (2024). https://doi.org/10.1007/s11665-023-09117-4.
  • [7] F. Ma, Z. Zeng, Y. Gao, Tribocorrosion and the surface repassivation behavior of Monel 400 alloy in artificial seawater, Industrial Lubrication and Tribology 70 (2018) 1331–1340. https://doi.org/10.1108/ILT-09-2017-0266.
  • [8] M. Kuklinski, A. Bartkowska, D. Przestacki, Laser Alloying Monel 400 with Amorphous Boron to Obtain Hard Coatings, Materials 12 (2019) 3494. https://doi.org/10.3390/ma12213494.
  • [9] C.H. Zhang, N. Yan, Y.X. Hao, C. Wang, X. Bian, S. Zhang, Study on Cavitation Erosion Behavior of Monel Alloys in the Simulated Seawater Solution, Adv Mat Res 631–632 (2013) 40–43. https://doi.org/10.4028/www.scientific.net/AMR.631-632.40.
  • [10] M. Mahalingam, R. Varahamoorthi, Investigation on tool wear rate of brass tool during machining of Monel 400 alloy using electric discharge machine, Mater Today Proc 26 (2020) 1213–1220. https://doi.org/10.1016/j.matpr.2020.02.244.
  • [11] P. Sudhakar Rao, A. Sinha, S.G. Patil, R. Kant, S.P. Sushma, Machining performance and optimization of process parameters of monel alloy 400 using ECM process, in: Modern Materials and Manufacturing Techniques, CRC Press, Boca Raton, 2024: pp. 288–305. https://doi.org/10.1201/9781032703046-11.
  • [12] A. Kumar, M. Nikam, T. Jagadeesha, A.U. Rehman, A.S. Bhongade, T. Shivagond, PMEDM process parameter optimization for machining superalloy MONEL 400, Mater Res Express 12 (2025) 026506. https://doi.org/10.1088/2053-1591/adb0a4.
  • [13] Y. Küçük, K.M. Döleker, M.S. Gök, S. Dal, Y. Altınay, A. Erdoğan, Microstructure, hardness and high temperature wear characteristics of boronized Monel 400, Surf Coat Technol 436 (2022) 128277. https://doi.org/10.1016/j.surfcoat.2022.128277.
  • [14] M.M. Karaca, S. Polat, İ. Esen, Reciprocating dry sliding wear behaviour of BN@MXene@AA7075 composites, J Compos Mater 58 (2024) 2007–2026. https://doi.org/10.1177/00219983241257665.
  • [15] J.F. Archard, Contact and Rubbing of Flat Surfaces, J Appl Phys 24 (1953) 981–988. https://doi.org/10.1063/1.1721448.
  • [16] F. Gelana, Wear Analysıs Of Overhead Lıne Contact Wıre Usıng Ansys Workbench Software, (2015).
  • [17] J.M. Thompson, A Proposal for the Wear Calculation, Department of Mechanical Engineering, MIT (2007) 45–57.
  • [18] J.L. Sullivan, Boundary lubrication and oxidational wear, J Phys D Appl Phys 19 (1986) 1999–2011. https://doi.org/10.1088/0022-3727/19/10/025.
  • [19] J.B. Krolczyk, R.W. Maruda, G.M. Krolczyk, S. Wojciechowski, M.K. Gupta, M.E. Korkmaz, Investigations on surface induced tribological characteristics in MQCL assisted machining of duplex stainless steel, Journal of Materials Research and Technology 18 (2022) 2754–2769. https://doi.org/10.1016/J.JMRT.2022.03.167.
  • [20] M. Danish, M.K. Gupta, S. Rubaiee, A. Ahmed, M.E. Korkmaz, Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718, Tribol Int 163 (2021) 107178. https://doi.org/10.1016/j.triboint.2021.107178.
  • [21] G. Uslu, M.E. Korkmaz, R.H.R. Elkilani, M.K. Gupta, G. Vashishtha, Investigation of Tribological Properties of Inconel 601 under Environmentally Friendly MQL and Nano-Fluid MQL with Pack Boronizing, Lubricants 12 (2024) 353. https://doi.org/10.3390/lubricants12100353.
  • [22] M.T. Özdemir, R. Demirsöz, R. Polat, Enhancing wear resistance of inconel 601 through pack alumunizing coating and advanced lubrication environments, Discov Mater 5 (2025) 27. https://doi.org/10.1007/s43939-025-00205-x.
  • [23] M. Buğday, M. Karalı, Ş. Talaş, Wear performance of GGG60 ductile iron rollers coated with WC-Co by electro spark deposition, Revista de Metalurgia 59 (2023) e249. https://doi.org/10.3989/revmetalm.249.
  • [24] M. Buğday, M. Karalı, Ş. Talaş, Investigation on Characterization of GGG 60 Coated with WC/Co by ESD Technique, Protection of Metals and Physical Chemistry of Surfaces 59 (2023) 1260–1266. https://doi.org/10.1134/S2070205123701125.
  • [25] H.E.L. Etri, A.K. Singla, M.T. Özdemir, M.E. Korkmaz, R. Demirsöz, M.K. Gupta, J.B. Krolczyk, N.S. Ross, Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants, Archives of Civil and Mechanical Engineering 23 (2023) 147. https://doi.org/10.1007/s43452-023-00685-9.
  • [26] R. Demirsöz, M.E. Korkmaz, M.K. Gupta, A novel use of hybrid Cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 Cr6 alloy, Tribol Int 173 (2022) 107613. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107613.
  • [27] W.G. Liang, Z.S. Zhang, L. Luo, Rolling friction performance analysis of swash-plate engine in underwater vehicle, Applied Mechanics and Materials 80 (2011) 855–859.
  • [28] O. Çakır, R. Demirsöz, M.T. Özdemir, M.E. Korkmaz, M.K. Gupta, M. Günay, N.S. Ross, A. Nag, Investigating the erosive wear characteristics of AISI 420 martensitic stainless steel after surface hardening by boriding, Journal of Materials Research and Technology 33 (2024) 2292–2302. https://doi.org/10.1016/j.jmrt.2024.09.208.
  • [29] D. Odabas, Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy, IOP Conf Ser Mater Sci Eng 295 (2018) 012008. https://doi.org/10.1088/1757-899X/295/1/012008.
  • [30] M. Zhang, S. Xu, J. Mo, Z. Xiang, Z. Zhou, Effect of uneven wear on the stability of friction braking system in high-speed train, Eng Fail Anal 158 (2024) 108009.

Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions

Year 2025, Volume: 6 Issue: 2, 157 - 163, 30.08.2025
https://doi.org/10.52795/mateca.1640090

Abstract

In this study, the wear behavior of Monel 400 alloy under different load and speed conditions was investigated using both experimental tests and numerical simulations. Wear tests were carried out using tungsten carbide (WC) ball with high hardness and abrasiveness. In the experiments, it was observed that there was a significant increase in the wear rate with the increase in applied load and speed. It was determined that especially at high loads, the material loss on the surface accelerated and more distinct wear marks were formed on the contact surface. The simulations performed were modeled based on Archard's wear law and verified with the experimental data obtained. According to the results obtained by simulation, the stress on the abrasive ball surface increases as speed and force increase. A maximum error rate of 12.30% was calculated between the simulation results and the experimental data, which shows that the finite element model is quite reliable in wear predictions. For example, in the wear tests carried out at a speed of 50 mm/s, a 168.4% increase in material volume loss occurred when the load was increased from 30 N to 50 N. This finding reveals the significant effect of the load on wear mechanisms. The studies show that the developed finite element model is successful in calculating wear deformations. In addition, results supporting that Monel 400 is a material with high wear resistance and can be used in applications requiring wear resistance in particular have been obtained. Future studies can be expanded to include different abrasive materials, changing environmental conditions and more complex loading scenarios.

References

  • [1] U. Esgin, D. Özyürek, H. Kaya, An investigation of wear behaviors of different Monel alloys produced by powder metallurgy, in: 2016: p. 020008. https://doi.org/10.1063/1.4945963.
  • [2] M. Kukliński, A. Bartkowska, D. Przestacki, G. Kinal, Influence of Microstructure and Chemical Composition on Microhardness and Wear Properties of Laser Borided Monel 400, Materials 13 (2020) 5757. https://doi.org/10.3390/ma13245757.
  • [3] E.O. Ezugwu, J. Bonney, Y. Yamane, An overview of the machinability of aeroengine alloys, J Mater Process Technol 134 (2003) 233–253. https://doi.org/10.1016/S0924-0136(02)01042-7.
  • [4] R.S. Dutta, Corrosion aspects of Ni–Cr–Fe based and Ni–Cu based steam generator tube materials, Journal of Nuclear Materials 393 (2009) 343–349. https://doi.org/10.1016/j.jnucmat.2009.06.020.
  • [5] M. Wiciak-Pikuła, A. Felusiak-Czyryca, P. Twardowski, Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling, Sensors 20 (2020) 5798. https://doi.org/10.3390/s20205798.
  • [6] M.S. Gul, R. Demirsöz, S. Kabave Kilincarslan, R. Polat, M.H. Cetin, Effect of Impact Angle and Speed, and Weight Abrasive Concentration on AISI 1015 and 304 Steel Exposed to Erosive Wear, J Mater Eng Perform (2024). https://doi.org/10.1007/s11665-023-09117-4.
  • [7] F. Ma, Z. Zeng, Y. Gao, Tribocorrosion and the surface repassivation behavior of Monel 400 alloy in artificial seawater, Industrial Lubrication and Tribology 70 (2018) 1331–1340. https://doi.org/10.1108/ILT-09-2017-0266.
  • [8] M. Kuklinski, A. Bartkowska, D. Przestacki, Laser Alloying Monel 400 with Amorphous Boron to Obtain Hard Coatings, Materials 12 (2019) 3494. https://doi.org/10.3390/ma12213494.
  • [9] C.H. Zhang, N. Yan, Y.X. Hao, C. Wang, X. Bian, S. Zhang, Study on Cavitation Erosion Behavior of Monel Alloys in the Simulated Seawater Solution, Adv Mat Res 631–632 (2013) 40–43. https://doi.org/10.4028/www.scientific.net/AMR.631-632.40.
  • [10] M. Mahalingam, R. Varahamoorthi, Investigation on tool wear rate of brass tool during machining of Monel 400 alloy using electric discharge machine, Mater Today Proc 26 (2020) 1213–1220. https://doi.org/10.1016/j.matpr.2020.02.244.
  • [11] P. Sudhakar Rao, A. Sinha, S.G. Patil, R. Kant, S.P. Sushma, Machining performance and optimization of process parameters of monel alloy 400 using ECM process, in: Modern Materials and Manufacturing Techniques, CRC Press, Boca Raton, 2024: pp. 288–305. https://doi.org/10.1201/9781032703046-11.
  • [12] A. Kumar, M. Nikam, T. Jagadeesha, A.U. Rehman, A.S. Bhongade, T. Shivagond, PMEDM process parameter optimization for machining superalloy MONEL 400, Mater Res Express 12 (2025) 026506. https://doi.org/10.1088/2053-1591/adb0a4.
  • [13] Y. Küçük, K.M. Döleker, M.S. Gök, S. Dal, Y. Altınay, A. Erdoğan, Microstructure, hardness and high temperature wear characteristics of boronized Monel 400, Surf Coat Technol 436 (2022) 128277. https://doi.org/10.1016/j.surfcoat.2022.128277.
  • [14] M.M. Karaca, S. Polat, İ. Esen, Reciprocating dry sliding wear behaviour of BN@MXene@AA7075 composites, J Compos Mater 58 (2024) 2007–2026. https://doi.org/10.1177/00219983241257665.
  • [15] J.F. Archard, Contact and Rubbing of Flat Surfaces, J Appl Phys 24 (1953) 981–988. https://doi.org/10.1063/1.1721448.
  • [16] F. Gelana, Wear Analysıs Of Overhead Lıne Contact Wıre Usıng Ansys Workbench Software, (2015).
  • [17] J.M. Thompson, A Proposal for the Wear Calculation, Department of Mechanical Engineering, MIT (2007) 45–57.
  • [18] J.L. Sullivan, Boundary lubrication and oxidational wear, J Phys D Appl Phys 19 (1986) 1999–2011. https://doi.org/10.1088/0022-3727/19/10/025.
  • [19] J.B. Krolczyk, R.W. Maruda, G.M. Krolczyk, S. Wojciechowski, M.K. Gupta, M.E. Korkmaz, Investigations on surface induced tribological characteristics in MQCL assisted machining of duplex stainless steel, Journal of Materials Research and Technology 18 (2022) 2754–2769. https://doi.org/10.1016/J.JMRT.2022.03.167.
  • [20] M. Danish, M.K. Gupta, S. Rubaiee, A. Ahmed, M.E. Korkmaz, Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718, Tribol Int 163 (2021) 107178. https://doi.org/10.1016/j.triboint.2021.107178.
  • [21] G. Uslu, M.E. Korkmaz, R.H.R. Elkilani, M.K. Gupta, G. Vashishtha, Investigation of Tribological Properties of Inconel 601 under Environmentally Friendly MQL and Nano-Fluid MQL with Pack Boronizing, Lubricants 12 (2024) 353. https://doi.org/10.3390/lubricants12100353.
  • [22] M.T. Özdemir, R. Demirsöz, R. Polat, Enhancing wear resistance of inconel 601 through pack alumunizing coating and advanced lubrication environments, Discov Mater 5 (2025) 27. https://doi.org/10.1007/s43939-025-00205-x.
  • [23] M. Buğday, M. Karalı, Ş. Talaş, Wear performance of GGG60 ductile iron rollers coated with WC-Co by electro spark deposition, Revista de Metalurgia 59 (2023) e249. https://doi.org/10.3989/revmetalm.249.
  • [24] M. Buğday, M. Karalı, Ş. Talaş, Investigation on Characterization of GGG 60 Coated with WC/Co by ESD Technique, Protection of Metals and Physical Chemistry of Surfaces 59 (2023) 1260–1266. https://doi.org/10.1134/S2070205123701125.
  • [25] H.E.L. Etri, A.K. Singla, M.T. Özdemir, M.E. Korkmaz, R. Demirsöz, M.K. Gupta, J.B. Krolczyk, N.S. Ross, Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants, Archives of Civil and Mechanical Engineering 23 (2023) 147. https://doi.org/10.1007/s43452-023-00685-9.
  • [26] R. Demirsöz, M.E. Korkmaz, M.K. Gupta, A novel use of hybrid Cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 Cr6 alloy, Tribol Int 173 (2022) 107613. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107613.
  • [27] W.G. Liang, Z.S. Zhang, L. Luo, Rolling friction performance analysis of swash-plate engine in underwater vehicle, Applied Mechanics and Materials 80 (2011) 855–859.
  • [28] O. Çakır, R. Demirsöz, M.T. Özdemir, M.E. Korkmaz, M.K. Gupta, M. Günay, N.S. Ross, A. Nag, Investigating the erosive wear characteristics of AISI 420 martensitic stainless steel after surface hardening by boriding, Journal of Materials Research and Technology 33 (2024) 2292–2302. https://doi.org/10.1016/j.jmrt.2024.09.208.
  • [29] D. Odabas, Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy, IOP Conf Ser Mater Sci Eng 295 (2018) 012008. https://doi.org/10.1088/1757-899X/295/1/012008.
  • [30] M. Zhang, S. Xu, J. Mo, Z. Xiang, Z. Zhou, Effect of uneven wear on the stability of friction braking system in high-speed train, Eng Fail Anal 158 (2024) 108009.
There are 30 citations in total.

Details

Primary Language English
Subjects Tribology
Journal Section Research Articles
Authors

Mehmet Tayyip Özdemir 0000-0002-4290-0045

Mustafa Buğday 0000-0003-4413-509X

Early Pub Date August 26, 2025
Publication Date August 30, 2025
Submission Date February 14, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Özdemir, M. T., & Buğday, M. (2025). Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions. Manufacturing Technologies and Applications, 6(2), 157-163. https://doi.org/10.52795/mateca.1640090
AMA Özdemir MT, Buğday M. Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions. MATECA. August 2025;6(2):157-163. doi:10.52795/mateca.1640090
Chicago Özdemir, Mehmet Tayyip, and Mustafa Buğday. “Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions”. Manufacturing Technologies and Applications 6, no. 2 (August 2025): 157-63. https://doi.org/10.52795/mateca.1640090.
EndNote Özdemir MT, Buğday M (August 1, 2025) Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions. Manufacturing Technologies and Applications 6 2 157–163.
IEEE M. T. Özdemir and M. Buğday, “Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions”, MATECA, vol. 6, no. 2, pp. 157–163, 2025, doi: 10.52795/mateca.1640090.
ISNAD Özdemir, Mehmet Tayyip - Buğday, Mustafa. “Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions”. Manufacturing Technologies and Applications 6/2 (August2025), 157-163. https://doi.org/10.52795/mateca.1640090.
JAMA Özdemir MT, Buğday M. Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions. MATECA. 2025;6:157–163.
MLA Özdemir, Mehmet Tayyip and Mustafa Buğday. “Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions”. Manufacturing Technologies and Applications, vol. 6, no. 2, 2025, pp. 157-63, doi:10.52795/mateca.1640090.
Vancouver Özdemir MT, Buğday M. Experimental and Numerical Investigation of Wear Behavior of Monel 400 Alloy under Different Load and Speed Conditions. MATECA. 2025;6(2):157-63.