Research Article
BibTex RIS Cite

Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method

Year 2025, Volume: 6 Issue: 2, 213 - 226, 30.08.2025
https://doi.org/10.52795/mateca.1710777

Abstract

This study aims to investigate the effects of different cutting conditions on the machining performance of difficult-to-machine AISI 316L stainless steel using the high-feed milling method. Experiments were conducted using different spindle speeds and feed rates; cutting temperatures were recorded using a thermal camera, surface roughness measured with a profilometer, and tool wear examined via SEM and EDS analysis. The findings reveal that air-assisted cooling reduced the maximum cutting temperature from 321°C to 197°C (a 39% reduction) compared to dry cutting. In terms of surface roughness, the lowest Ra value achieved under air-assisted conditions was 0.929 µm, compared to 1.100 µm under dry conditions. Tool wear analyses showed that air-assisted cooling significantly reduced coating delamination and material adhesion on the tool surface. These advantages provided by the air-assisted system stand out as an environmentally friendly and energy-efficient alternative, especially in processes where high temperatures and tool wear are critical.

References

  • [1] S. Debnath, M. M. Reddy, Q. S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: A review, J Clean Prod 83 (2014) 33–47. doi: 10.1016/j.jclepro.2014.07.071
  • [2] S. H. Ryu, D. K. Choi, C. N. Chu, Roughness and texture generation on end milled surfaces, Int J Mach Tools Manuf 46 (3–4) (2006) 404–412. doi: 10.1016/j.ijmachtools.2005.05.010
  • [3] D. Biermann, P. Kersting, T. Surmann, A general approach to simulating workpiece vibrations during five-axis milling of turbine blades, CIRP Ann - Manuf Technol 59(1) (2010) 125–128. doi: 10.1016/j.cirp.2010.03.057
  • [4] R. Hense, C. Wels, P. Kersting, U. Vierzigmann, M. Löffler, D. Biermann, M. Merklein, High-feed milling of tailored surfaces for sheet-bulk metal forming tools, Prod Eng 9(2) (2015) 215–223. doi: 10.1007/s11740-014-0597-0
  • [5] G. Uzun, R. Çakıroğlu, Investigation of Machinability Parameters in High-Feed Milling Process, Manuf Technol Appl 1(1) (2020) 34–41.
  • [6] H. Dong, Z. C. Li, M. C. Somani, R. D. K. Misra, The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel, J Mech Behav Biomed Mater 119(2021) 104489. doi: 10.1016/j.jmbbm.2021.104489
  • [7] A. Amininejad, R. Jamaati, S. J. Hosseinipour, Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling, Mater Chem Phys 256 (2020) 123668. doi: 10.1016/j.matchemphys.2020.123668
  • [8] B. Weiss, R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Met Trans 3(4) (1972) 851–866. doi: 10.1007/bf02647659
  • [9] P. Kumar, R. Jayaraj, J. Suryawanshi, U. R. Satwik, J. McKinnell, U. Ramamurty, Fatigue strength of additively manufactured 316L austenitic stainless steel, Acta Mater 199 (2020) 225–239. doi: 10.1016/j.actamat.2020.08.033
  • [10] N. Ahmed, I. Barsoum, G. Haidemenopoulos, R. K. A. Al-Rub, Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review, J Manuf Process 75 (2022) 415–434. doi: 10.1016/j.jmapro.2021.12.064
  • [11] I. Korkut, M. Kasap, I. Ciftci, U. Seker, Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel, Mater Des 25(4) (2004) 303–305. doi: 10.1016/j.matdes.2003.10.011
  • [12] G. Özger, M. Akgün, H. Demir, Effect of sustainable cooling and lubrication method on the hole quality and machinability performance in drilling of AA7075 alloy with cryogenically treated carbide drills, Mater Test 67(5) (2025) 910-925.
  • [13] R. Çakıroğlu, G. Uzun, Modeling of the Cutting Force and Workpiece Surface Roughness During the Milling Process with High Feed Using Artificial Neural Networks, Gazi J Eng Sci 7(1) (2021) 58–66. doi: 10.30855/gmbd.2021.01.07
  • [14] D. Russo, G. Urbicain, A. J. Sánchez Egea, A. Simoncelli, D. Martinez Krahmer, Milling force model for asymmetric end-mills during high-feed milling on AISI-P20, Mater Manuf Process 36(15) (2021) 1761–1768. doi: 10.1080/10426914.2021.1944199
  • [15] J. Duplák, M. Hatala, D. Dupláková, J. Steranka, Evaluation of time efficiency of high feed milling, TEM J 7(1) (2018) 13–18. doi: 10.18421/TEM71-02
  • [16] G. Liu, B. Zou, C. Huang, X. Wang, J. Wang, Z. Liu, Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel, Int J Adv Manuf Technol 83(1–4) (2016) 257–264. doi: 10.1007/s00170-015-7564-6
  • [17] F. Jurina, T. Vopát, M. Kuruc, V. Šimna, The tool wear observation of milling tools in high feed machining of hardened steels, Ann DAAAM Proc 30(1) (2019) 753–757. doi: 10.2507/30th.daaam.proceedings.103
  • [18] S. Ehsan, S. A. Khan, M. Rehman, Defect-free high-feed milling of Ti-6Al-4V alloy via a combination of cutting and wiper inserts, Int J Adv Manuf Technol 114(1–2) (2021) 641–653. doi: 10.1007/s00170-021-06875-0
  • [19] M. Kuruc, M. Vozár, V. Šimna, T. Vopát, J. Moravčíková, J. Peterka, Comparison of high feed machining with conventional milling in terms of surfacequality and productivity, Ann DAAAM Proc 30( 1) (2019) 376–383. doi: 10.2507/30th.daaam.proceedings.051
  • [20] J. Xu, B. Rong, H. Z. Zhang, D. S.Wang, L. Li, Investigation of Cutting Force in High Feed Milling of Ti6Al4V, Mater Sci Forum 770 (2014) 106–109. doi: https://doi.org/10.4028/www.scientific.net/MSF.770.106
  • [21] Y. Turgut, İ. Çakmak, Investigation of the Effect of Chip Breaker Form on Surface Roughness and Cutting Forces in AISI 1040 Steel Milling, Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 7(2) (2019) 482–494 doi: 10.29109/gujsc.518229
  • [22] D. López, N. A. Falleiros, A. P.Tschiptschin, ASTM A240 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM 2004.
  • [23] W. M. Chiang, F. J. Wang, Kusnandar, An experiment investigation of temperature control performance for machine tool oil coolers with hot-gas bypass temperature control scheme and inverter temperature control scheme, J Mech Sci Technol 35(2) (2021) 771–778. doi: 10.1007/s12206-021-0137-8
  • [24] V. Y. Bhise, B. F. Jogi, Multi-response optimization and effect of process parameters during machining of inconel X-750 using grey relational analysis and analysis of variance, Int J Interact Des Manuf 19(6) (2024) 4073–4083. doi: 10.1007/s12008-024-01982-0
  • [25] N. Tosun, C. Kuru, E. Altintaş, O. E. Erdin, Investigation of surface roughness in milling with air and conventional cooling method, J Fac Eng Archit Gazi Univ 25(1) (2010) 141–146.
  • [26] Ü. Değirmenci, Nimonic-60 Süper Alaşımının Sürdürülebilir Koşullar Altında İşlenebilirlik Özelliklerinin Belirlenmesi, J Inst Sci Technol Üniversitesi Fen Bilim Enstitüsü Derg 14(3) (2024) 1228. doi: 10.21597/jist.1481108
  • [27] J. Kundrák, A. P. Markopoulos, T. Makkai, I. Deszpoth, A. Nagy, Analysis of the effect of feed on chip size ratio and cutting forces in face milling for various cutting speeds, Manuf Technol 18(3) (2018) 431–438. doi: 10.21062/ujep/117.2018/a/1213-2489/MT/18/3/431
  • [28] G. Yingfei, P. M. de Escalona, A. Galloway, Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment, J Mater Eng Perform 26(1) (2017) 312–326. doi: 10.1007/s11665-016-2438-0
  • [29] N. A. Abukhshim, P. T. Mativenga, M. A. Sheikh, Investigation of heat partition in high speed turning of high strength alloy steel, Int. J. Mach. Tools Manuf., 45(15) (2005) 1687–1695. doi: 10.1016/j.ijmachtools.2005.03.008.
  • [30] J. Kundrak C. Felho, Topography of the machined surface in high performance face milling, Procedia CIRP 77 (2018) 340–343. doi: 10.1016/j.procir.2018.09.030
  • [31] N. M. Liu, K. T. Chiang, C. M. Hung, Modeling and analyzing the effects of air-cooled turning on the machinability of Ti-6Al-4V titanium alloy using the cold air gun coolant system, Int J Adv Manuf Technol 67(5–8) (2013) 1053–1066. doi: 10.1007/s00170-012-4547-8
  • [32] J. Nakagawa, Y. Yoshimi, K. Chiba, R. Tanaka, Evaluation and quantification of diffusion wear between cutting chip and workpiece using forging press, Manuf Lett 41 (2024) 588–594. doi: 10.1016/j.mfglet.2024.09.075
  • [33] A. W. Nemetz, W. Daves, T. Klünsner, C. Praetzas, W. Liu, T.Teppernegg, J. Schäfer, Experimentally validated calculation of the cutting edge temperature during dry milling of Ti6Al4V, Journal of Mater Proces Techn 278 (2020) 116544. doi: 10.1016/j.jmatprotec.2019.116544
  • [34] T. Obikawa, T. Ohno, R. Nakatsukasa, M. Hayashi, T. Tabata, High Speed Machining of Difficult-to-Machine Materials under Different Lubrication Conditions, Key Eng Mater 625 (2014) 60–65. doi: https://doi.org/10.4028/www.scientific.net/KEM.625.60
  • [35] W. Wan, Q. Zhou, M. Liang, P.Wang, C. Rao, S. Ji, K. Fan, J. Song, Study on the high temperature wear behavior of TiAlSiN coatings deposited on WC-TaC-Co cemented carbides, Tribol Int 200 (2024) 110115. doi: 10.1016/j.triboint.2024.110115

AISI 316L Paslanmaz Çeliğin Yüksek İlerlemeli Frezeleme Yöntemiyle İşlenebilirliğinin Deneysel Araştırılması

Year 2025, Volume: 6 Issue: 2, 213 - 226, 30.08.2025
https://doi.org/10.52795/mateca.1710777

Abstract

Bu çalışma, işlenmesi güç olan AISI 316L paslanmaz çeliğin yüksek ilerlemeli frezeleme yöntemiyle işlenmesinde farklı kesme koşullarının işleme performansı üzerindeki etkilerini incelemeyi amaçlamaktadır. Deneyler farklı iş mili devir sayıları ve ilerleme hızlarında gerçekleştirilmiş; kesme sıcaklıkları termal kamera ile, yüzey pürüzlülüğü profilometre ile ölçülmüş ve takım aşınmaları SEM ile EDS analizleriyle incelenmiştir. Bulgular, hava destekli soğutmanın kesme bölgesindeki maksimum sıcaklığı 321°C’den 197°C’ye (%39 azalma) düşürdüğünü göstermektedir. Yüzey pürüzlülüğü açısından, hava destekli sistemde elde edilen en düşük Ra değeri 0.929 µm, kuru işlemede ise 1,100 µm olarak ölçülmüştür. Takım aşınması analizleri, hava destekli kesimlerde kaplama tabakasında oluşan hasarların ve malzeme yapışmalarının önemli ölçüde azaldığını ortaya koymuştur. Bu bulgular, hava destekli sistemin çevreci ve enerji verimli bir alternatif olarak, yüksek sıcaklıkların ve takım aşınmasının kritik olduğu uygulamalarda öne çıktığını göstermektedir.

References

  • [1] S. Debnath, M. M. Reddy, Q. S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: A review, J Clean Prod 83 (2014) 33–47. doi: 10.1016/j.jclepro.2014.07.071
  • [2] S. H. Ryu, D. K. Choi, C. N. Chu, Roughness and texture generation on end milled surfaces, Int J Mach Tools Manuf 46 (3–4) (2006) 404–412. doi: 10.1016/j.ijmachtools.2005.05.010
  • [3] D. Biermann, P. Kersting, T. Surmann, A general approach to simulating workpiece vibrations during five-axis milling of turbine blades, CIRP Ann - Manuf Technol 59(1) (2010) 125–128. doi: 10.1016/j.cirp.2010.03.057
  • [4] R. Hense, C. Wels, P. Kersting, U. Vierzigmann, M. Löffler, D. Biermann, M. Merklein, High-feed milling of tailored surfaces for sheet-bulk metal forming tools, Prod Eng 9(2) (2015) 215–223. doi: 10.1007/s11740-014-0597-0
  • [5] G. Uzun, R. Çakıroğlu, Investigation of Machinability Parameters in High-Feed Milling Process, Manuf Technol Appl 1(1) (2020) 34–41.
  • [6] H. Dong, Z. C. Li, M. C. Somani, R. D. K. Misra, The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel, J Mech Behav Biomed Mater 119(2021) 104489. doi: 10.1016/j.jmbbm.2021.104489
  • [7] A. Amininejad, R. Jamaati, S. J. Hosseinipour, Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling, Mater Chem Phys 256 (2020) 123668. doi: 10.1016/j.matchemphys.2020.123668
  • [8] B. Weiss, R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Met Trans 3(4) (1972) 851–866. doi: 10.1007/bf02647659
  • [9] P. Kumar, R. Jayaraj, J. Suryawanshi, U. R. Satwik, J. McKinnell, U. Ramamurty, Fatigue strength of additively manufactured 316L austenitic stainless steel, Acta Mater 199 (2020) 225–239. doi: 10.1016/j.actamat.2020.08.033
  • [10] N. Ahmed, I. Barsoum, G. Haidemenopoulos, R. K. A. Al-Rub, Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review, J Manuf Process 75 (2022) 415–434. doi: 10.1016/j.jmapro.2021.12.064
  • [11] I. Korkut, M. Kasap, I. Ciftci, U. Seker, Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel, Mater Des 25(4) (2004) 303–305. doi: 10.1016/j.matdes.2003.10.011
  • [12] G. Özger, M. Akgün, H. Demir, Effect of sustainable cooling and lubrication method on the hole quality and machinability performance in drilling of AA7075 alloy with cryogenically treated carbide drills, Mater Test 67(5) (2025) 910-925.
  • [13] R. Çakıroğlu, G. Uzun, Modeling of the Cutting Force and Workpiece Surface Roughness During the Milling Process with High Feed Using Artificial Neural Networks, Gazi J Eng Sci 7(1) (2021) 58–66. doi: 10.30855/gmbd.2021.01.07
  • [14] D. Russo, G. Urbicain, A. J. Sánchez Egea, A. Simoncelli, D. Martinez Krahmer, Milling force model for asymmetric end-mills during high-feed milling on AISI-P20, Mater Manuf Process 36(15) (2021) 1761–1768. doi: 10.1080/10426914.2021.1944199
  • [15] J. Duplák, M. Hatala, D. Dupláková, J. Steranka, Evaluation of time efficiency of high feed milling, TEM J 7(1) (2018) 13–18. doi: 10.18421/TEM71-02
  • [16] G. Liu, B. Zou, C. Huang, X. Wang, J. Wang, Z. Liu, Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel, Int J Adv Manuf Technol 83(1–4) (2016) 257–264. doi: 10.1007/s00170-015-7564-6
  • [17] F. Jurina, T. Vopát, M. Kuruc, V. Šimna, The tool wear observation of milling tools in high feed machining of hardened steels, Ann DAAAM Proc 30(1) (2019) 753–757. doi: 10.2507/30th.daaam.proceedings.103
  • [18] S. Ehsan, S. A. Khan, M. Rehman, Defect-free high-feed milling of Ti-6Al-4V alloy via a combination of cutting and wiper inserts, Int J Adv Manuf Technol 114(1–2) (2021) 641–653. doi: 10.1007/s00170-021-06875-0
  • [19] M. Kuruc, M. Vozár, V. Šimna, T. Vopát, J. Moravčíková, J. Peterka, Comparison of high feed machining with conventional milling in terms of surfacequality and productivity, Ann DAAAM Proc 30( 1) (2019) 376–383. doi: 10.2507/30th.daaam.proceedings.051
  • [20] J. Xu, B. Rong, H. Z. Zhang, D. S.Wang, L. Li, Investigation of Cutting Force in High Feed Milling of Ti6Al4V, Mater Sci Forum 770 (2014) 106–109. doi: https://doi.org/10.4028/www.scientific.net/MSF.770.106
  • [21] Y. Turgut, İ. Çakmak, Investigation of the Effect of Chip Breaker Form on Surface Roughness and Cutting Forces in AISI 1040 Steel Milling, Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 7(2) (2019) 482–494 doi: 10.29109/gujsc.518229
  • [22] D. López, N. A. Falleiros, A. P.Tschiptschin, ASTM A240 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM 2004.
  • [23] W. M. Chiang, F. J. Wang, Kusnandar, An experiment investigation of temperature control performance for machine tool oil coolers with hot-gas bypass temperature control scheme and inverter temperature control scheme, J Mech Sci Technol 35(2) (2021) 771–778. doi: 10.1007/s12206-021-0137-8
  • [24] V. Y. Bhise, B. F. Jogi, Multi-response optimization and effect of process parameters during machining of inconel X-750 using grey relational analysis and analysis of variance, Int J Interact Des Manuf 19(6) (2024) 4073–4083. doi: 10.1007/s12008-024-01982-0
  • [25] N. Tosun, C. Kuru, E. Altintaş, O. E. Erdin, Investigation of surface roughness in milling with air and conventional cooling method, J Fac Eng Archit Gazi Univ 25(1) (2010) 141–146.
  • [26] Ü. Değirmenci, Nimonic-60 Süper Alaşımının Sürdürülebilir Koşullar Altında İşlenebilirlik Özelliklerinin Belirlenmesi, J Inst Sci Technol Üniversitesi Fen Bilim Enstitüsü Derg 14(3) (2024) 1228. doi: 10.21597/jist.1481108
  • [27] J. Kundrák, A. P. Markopoulos, T. Makkai, I. Deszpoth, A. Nagy, Analysis of the effect of feed on chip size ratio and cutting forces in face milling for various cutting speeds, Manuf Technol 18(3) (2018) 431–438. doi: 10.21062/ujep/117.2018/a/1213-2489/MT/18/3/431
  • [28] G. Yingfei, P. M. de Escalona, A. Galloway, Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment, J Mater Eng Perform 26(1) (2017) 312–326. doi: 10.1007/s11665-016-2438-0
  • [29] N. A. Abukhshim, P. T. Mativenga, M. A. Sheikh, Investigation of heat partition in high speed turning of high strength alloy steel, Int. J. Mach. Tools Manuf., 45(15) (2005) 1687–1695. doi: 10.1016/j.ijmachtools.2005.03.008.
  • [30] J. Kundrak C. Felho, Topography of the machined surface in high performance face milling, Procedia CIRP 77 (2018) 340–343. doi: 10.1016/j.procir.2018.09.030
  • [31] N. M. Liu, K. T. Chiang, C. M. Hung, Modeling and analyzing the effects of air-cooled turning on the machinability of Ti-6Al-4V titanium alloy using the cold air gun coolant system, Int J Adv Manuf Technol 67(5–8) (2013) 1053–1066. doi: 10.1007/s00170-012-4547-8
  • [32] J. Nakagawa, Y. Yoshimi, K. Chiba, R. Tanaka, Evaluation and quantification of diffusion wear between cutting chip and workpiece using forging press, Manuf Lett 41 (2024) 588–594. doi: 10.1016/j.mfglet.2024.09.075
  • [33] A. W. Nemetz, W. Daves, T. Klünsner, C. Praetzas, W. Liu, T.Teppernegg, J. Schäfer, Experimentally validated calculation of the cutting edge temperature during dry milling of Ti6Al4V, Journal of Mater Proces Techn 278 (2020) 116544. doi: 10.1016/j.jmatprotec.2019.116544
  • [34] T. Obikawa, T. Ohno, R. Nakatsukasa, M. Hayashi, T. Tabata, High Speed Machining of Difficult-to-Machine Materials under Different Lubrication Conditions, Key Eng Mater 625 (2014) 60–65. doi: https://doi.org/10.4028/www.scientific.net/KEM.625.60
  • [35] W. Wan, Q. Zhou, M. Liang, P.Wang, C. Rao, S. Ji, K. Fan, J. Song, Study on the high temperature wear behavior of TiAlSiN coatings deposited on WC-TaC-Co cemented carbides, Tribol Int 200 (2024) 110115. doi: 10.1016/j.triboint.2024.110115
There are 35 citations in total.

Details

Primary Language English
Subjects Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Research Articles
Authors

Yusuf Siyambaş 0000-0001-8360-5213

Aslan Akdulum 0000-0003-2030-3167

Early Pub Date August 26, 2025
Publication Date August 30, 2025
Submission Date May 31, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Siyambaş, Y., & Akdulum, A. (2025). Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method. Manufacturing Technologies and Applications, 6(2), 213-226. https://doi.org/10.52795/mateca.1710777
AMA Siyambaş Y, Akdulum A. Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method. MATECA. August 2025;6(2):213-226. doi:10.52795/mateca.1710777
Chicago Siyambaş, Yusuf, and Aslan Akdulum. “Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method”. Manufacturing Technologies and Applications 6, no. 2 (August 2025): 213-26. https://doi.org/10.52795/mateca.1710777.
EndNote Siyambaş Y, Akdulum A (August 1, 2025) Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method. Manufacturing Technologies and Applications 6 2 213–226.
IEEE Y. Siyambaş and A. Akdulum, “Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method”, MATECA, vol. 6, no. 2, pp. 213–226, 2025, doi: 10.52795/mateca.1710777.
ISNAD Siyambaş, Yusuf - Akdulum, Aslan. “Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method”. Manufacturing Technologies and Applications 6/2 (August2025), 213-226. https://doi.org/10.52795/mateca.1710777.
JAMA Siyambaş Y, Akdulum A. Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method. MATECA. 2025;6:213–226.
MLA Siyambaş, Yusuf and Aslan Akdulum. “Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method”. Manufacturing Technologies and Applications, vol. 6, no. 2, 2025, pp. 213-26, doi:10.52795/mateca.1710777.
Vancouver Siyambaş Y, Akdulum A. Experimental Investigation of Machinability of AISI 316L Stainless Steel by High Feed Milling Method. MATECA. 2025;6(2):213-26.