Research Article
BibTex RIS Cite

Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance

Year 2025, Volume: 6 Issue: 2, 227 - 238, 30.08.2025
https://doi.org/10.52795/mateca.1715207

Abstract

Zirconium 702 (Zr 702) alloy exhibits excellent corrosion resistance but suffers from low hardness and poor wear resistance, limiting its use in wear-intensive applications. In this study, a pack aluminizing treatment was applied to Zr 702 to form a hard aluminide surface layer aimed at improving its tribological performance. Characterization by X-ray diffraction (XRD) and cross-sectional scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) confirmed the formation of a continuous diffusion coating approximately 40 µm thick, composed predominantly of an Al-rich intermetallic phase (mainly Al3Zr). This aluminized layer was dense, well-adhered, and significantly harder than the substrate, with a Vickers microhardness of 703.1 ± 76.7 HV0.025 compared to 182.9 ± 20.7 HV0.025 for untreated Zr 702. In dry sliding reciprocating wear tests (2–4 N loads against an alumina counterface), the aluminized sample exhibited a much lower and more stable coefficient of friction (COF), reaching a steady value of about 0.35 under 4 N load, whereas the untreated Zr 702 stabilized around 0.6 under the same conditions. In comparison with the untreated Zr 702, the aluminized surface exhibited about a 70% reduction in wear volume under a 4 N load as a result of the improved hardness and modification of its surface with an intermetallic layer. Wear track analysis further revealed that the dominant wear mechanism shifted from severe adhesive and abrasive wear in the untreated Zr 702 to a mild abrasive/oxidative wear mode in the aluminized sample, as the hard intermetallic layer protected the underlying Zr from significant damage. Overall, the pack aluminizing process remarkably enhanced the surface hardness, frictional behavior, and wear resistance of Zr 702, demonstrating an effective surface engineering approach to improve the tribological performance of zirconium alloys.

Thanks

Dr. F. Muhaffel thanks Mr. E. Balci from Istanbul Technical University, Turkey, for the technical assistance provided during the pack aluminizing of Zr 702 alloy. Dr. F. Muhaffel would also like to thank the support of the Turkish Academy of Sciences (TÜBA)—Outstanding Young Scientists Award (GEBİP).

References

  • [1] R.B. Adamson, P. Rudling, Properties of zirconium alloys and their applications in light water reactors (LWRs), Woodhead Publishing Limited, 2013. https://doi.org/10.1533/9780857097453.2.151.
  • [2] J. Xu, H. Li, X. Zhao, J. Wu, B. Zhao, H. Zhao, J. Wu, Y. Zhang, C. Liu, Zirconium based neutron absorption material with outstanding corrosion resistance and mechanical properties, J. Nucl. Mater. 567 (2022) 153763. https://doi.org/10.1016/j.jnucmat.2022.153763.
  • [3] J. Jiang, C. Zhou, Y. Zhao, F. He, X. Wang, Journal of the Mechanical Behavior of Biomedical Materials Development and properties of dental Ti – Zr binary alloys, J. Mech. Behav. Biomed. Mater. 112 (2020) 104048. https://doi.org/10.1016/j.jmbbm.2020.104048.
  • [4] N.B. Bonnheim, D.W. Van Citters, M.D. Ries, L.A. Pruitt, Oxidized Zirconium Components Maintain a Smooth Articular Surface Except Following Hip Dislocation, J. Arthroplasty 36 (2021) 1437–1444. https://doi.org/10.1016/j.arth.2020.10.054.
  • [5] C. Hu, L. Chai, Z. Wang, T. Yang, Y. Tang, Z. Wang, W. Gong, K.L. Murty, Microstructure and wear resistance of zirconium manufactured by laser directed energy deposition, Int. J. Refract. Met. Hard Mater. 130 (2025) 107168. https://doi.org/10.1016/j.ijrmhm.2025.107168.
  • [6] X. Xiong, X. Li, J. Alexander, Z. Zhang, H. Dong, A Novel Catalytic Ceramic Conversion Treatment of Zr702 to Combat Wear, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16051763.
  • [7] S. Wang, Y. Zhang, H. Ming, J. Wang, J. Wang, E.H. Han, Impact of dissolved oxygen concentration on the coupling damage between fretting wear and corrosion on zirconium alloy cladding tube in high temperature pressurized water, Wear 572–573 (2025) 206058. https://doi.org/10.1016/j.wear.2025.206058.
  • [8] D. Zhu, X. Li, S. Chai, T.S. Chee, C. Kim, L. Li, D. Liu, Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy, J. Mech. Behav. Biomed. Mater. 165 (2025) 106951. https://doi.org/10.1016/j.jmbbm.2025.106951.
  • [9] N.C. Reger, V.K. Balla, M. Das, A.K. Bhargava, Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications, Surf. Coatings Technol. 334 (2018) 357–364. https://doi.org/10.1016/j.surfcoat.2017.11.064.
  • [10] V. Pawar, C. Weaver, S. Jani, Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications, Appl. Surf. Sci. 257 (2011) 6118–6124. https://doi.org/10.1016/j.apsusc.2011.02.014.
  • [11] R. V. Umretiya, B. Elward, D. Lee, M. Anderson, R.B. Rebak, J. V. Rojas, Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4, J. Nucl. Mater. 541 (2020) 50–65. https://doi.org/10.1016/j.jnucmat.2020.152420.
  • [12] B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors, Jom 70 (2018) 198–202. https://doi.org/10.1007/s11837-017-2643-9.
  • [13] H. Guan, L. Chai, X. Liu, Z. Li, G. Zhang, H. Wang, X. An, Microstructure, hardness and wear performance of quaternary CrNbTiZr refractory medium-entropy alloy coating fabricated on a commercial Zr alloy by pulsed laser cladding, J. Mater. Res. Technol. 24 (2023) 8877–8886. https://doi.org/10.1016/j.jmrt.2023.05.142.
  • [14] Y. Lu, Q. Shangguan, C. Huang, J. Pan, J. Zeng, A study on diffusion in hot-dip aluminizing, in: Adv. Mater. Res., 2010: pp. 1253–1256. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1253.
  • [15] Y. Yürektürk, M. Baydoğan, Characterization of ferritic ductile iron subjected to successive aluminizing and austempering, Surf. Coatings Technol. 347 (2018) 142–149. https://doi.org/10.1016/j.surfcoat.2018.04.083.
  • [16] R. Sitek, Influence of the high-temperature aluminizing process on the microstructure and corrosion resistance of the IN 740H nickel superalloy, Vacuum 167 (2019) 554–563. https://doi.org/10.1016/j.vacuum.2018.08.047.
  • [17] S. Sheikh, L. Gan, X. Montero, H. Murakami, S. Guo, Forming protective alumina scale for ductile refractory high-entropy alloys via aluminizing, Intermetallics 123 (2020) 106838. https://doi.org/10.1016/j.intermet.2020.106838.
  • [18] R. Pretorius, T.K. Marais, C.C. Theron, Thin film compound phase formation sequence: An effective heat of formation model, Mater. Sci. Reports 10 (1993) 1–83. https://doi.org/10.1016/0920-2307(93)90003-W.
  • [19] A. Laik, K. Bhanumurthy, G.B. Kale, Intermetallics in the Zr-Al diffusion zone, Intermetallics 12 (2004) 69–74. https://doi.org/10.1016/j.intermet.2003.09.002.
  • [20] A. Priyadarshi, T. Subroto, J. Nohava, S. Pavel, M. Conte, K. Pericleous, D. Eskin, I. Tzanakis, Investigation of mechanical properties of Al3Zr intermetallics at room and elevated temperatures using nanoindentation, Intermetallics 154 (2023) 107825. https://doi.org/10.1016/j.intermet.2023.107825.
  • [21] R. Priya, C. Mallika, U.K. Mudali, Wear and tribocorrosion behaviour of 304L SS, Zr-702, Zircaloy-4 and Ti-grade2, Wear 310 (2014) 90–100. https://doi.org/10.1016/j.wear.2013.11.051.
  • [22] K.M. Doleker, T. Yener, A. Erdogan, F. Yılmaz, G.C. Efe, Effect of Si and Cr on formation of aluminide coatings on Ti6Al4V alloy by low temperature aluminizing: Wear and oxidation behavior, Surf. Coatings Technol. 509 (2025). https://doi.org/10.1016/j.surfcoat.2025.132207.
  • [23] X. Wang, D. Qu, Y. Duan, M. Peng, Wear and corrosion properties of a B–Al composite layer on pure titanium, Ceram. Int. 48 (2022) 12038–12047. https://doi.org/10.1016/j.ceramint.2022.01.061.
  • [24] Y. Guo, Z. Wang, N. Li, S. Yang, Y. Wu, Y. Duan, A. Yang, L. Ma, S. Zheng, Y. Li, Microstructure , wear and corrosion behaviors of TC21 titanium alloy by solid powder-packing boriding and aluminizing, 36 (2025) 6387–6399. https://doi.org/10.1016/j.jmrt.2025.04.280.
  • [25] U. Gürol, Y. Altınay, A. Günen, Ö.S. Bölükbaşı, M. Koçak, G. Çam, Effect of powder-pack aluminizing on microstructure and oxidation resistance of wire arc additively manufactured stainless steels, Surf. Coatings Technol. 468 (2023). https://doi.org/10.1016/j.surfcoat.2023.129742.
  • [26] C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident-Tolerant fuel (ATF) claddings, Corros. Rev. 35 (2017) 141–165. https://doi.org/10.1515/corrrev-2017-0010.
  • [27] T.R. Netto, A. K. Evans, D. T. Goddard, J. L. Cooper, P. Kelly, Effects of sample bias on wear resistance of magnetron sputtered chromium coated zirconium alloy, Surf. Coatings Technol. 498 (2025) 131847. https://doi.org/10.1016/j.surfcoat.2025.131847.

702 Zirkonyum Alaşımının Yüzey Sertliğini ve Aşınma Direncini Artırmaya Yönelik Kutu Alüminizasyon Uygulaması

Year 2025, Volume: 6 Issue: 2, 227 - 238, 30.08.2025
https://doi.org/10.52795/mateca.1715207

Abstract

Zirkonyum 702 (Zr 702) alaşımı mükemmel korozyon direnci sergilemekle birlikte düşük sertlik ve zayıf aşınma direnci nedeniyle yoğun aşınma koşullarındaki uygulamalarda sınırlı kullanılmaktadır. Bu çalışmada, Zr 702’ye kutu aluminizasyonu işlemi uygulanarak tribolojik performansını artırmayı amaçlayan sert bir aluminit yüzey tabakası oluşturulmuştur. X-ışını kırınımı (XRD) ile taramalı elektron mikroskoskopisi/enerji dağılımlı spektroskopisi (SEM/EDS) karakterizasyonu, ağırlıklı olarak Al’ce zengin bir intermetalik fazdan (başlıca Al3Zr) oluşan, yaklaşık 40 µm kalınlığında bir difüzyon esaslı kaplamanın oluştuğunu doğrulamıştır. Bu tabaka yoğun, altlığa iyi yapışmış ve iç yapıdan belirgin şekilde daha serttir. Kaplamanın Vickers mikrosertliği 703,1 ± 76,7 HV0.025 olup, işlem görmemiş Zr 702’nin sertliği ise 182,9 ± 20,7 HV0.025 mertebesindedir. Kuru kaymalı geri-ileri aşınma testlerinde (2–4 N yük, alümina karşı yüzey) aluminizasyon uygulanmış numune çok daha düşük ve kararlı bir sürtünme katsayısına (COF) ulaşmış ve COF değeri 4 N yük altında yaklaşık 0,35 düzeyinde sabitlenirken işlem görmemiş Zr 702 aynı koşullarda yaklaşık 0,6’da stabilize olmuştur. Artan sertlik ve yüzeyin sert intermetalik bir tabaka ile modifiye edilmesi sayesinde, aluminizasyon uygulanmış yüzey 4 N yükte aşınma hacmini işlem görmemiş Zr 702’ye göre yaklaşık %70 oranında azaltmıştır. Aşınma izi analizleri, işlen görmemiş Zr 702’de gözlenen şiddetli adezif ve abrazif aşınma mekanizmalarının aluminizasyon uygulanmış numunede sert intermetalik tabakanın altlık Zr 702’yi koruması sayesinde hafif aşındırıcı/oksidatif aşınmaya dönüştüğünü ortaya koymuştur. Sonuç olarak, kutu aluminizasyonu işlemi Zr 702’nin yüzey sertliğini, sürtünme davranışını ve aşınma direncini dikkate değer ölçüde iyileştirerek zirkonyum alaşımlarının tribolojik performansını artırmak için etkili bir yüzey mühendisliği yaklaşımı sunmaktadır.

References

  • [1] R.B. Adamson, P. Rudling, Properties of zirconium alloys and their applications in light water reactors (LWRs), Woodhead Publishing Limited, 2013. https://doi.org/10.1533/9780857097453.2.151.
  • [2] J. Xu, H. Li, X. Zhao, J. Wu, B. Zhao, H. Zhao, J. Wu, Y. Zhang, C. Liu, Zirconium based neutron absorption material with outstanding corrosion resistance and mechanical properties, J. Nucl. Mater. 567 (2022) 153763. https://doi.org/10.1016/j.jnucmat.2022.153763.
  • [3] J. Jiang, C. Zhou, Y. Zhao, F. He, X. Wang, Journal of the Mechanical Behavior of Biomedical Materials Development and properties of dental Ti – Zr binary alloys, J. Mech. Behav. Biomed. Mater. 112 (2020) 104048. https://doi.org/10.1016/j.jmbbm.2020.104048.
  • [4] N.B. Bonnheim, D.W. Van Citters, M.D. Ries, L.A. Pruitt, Oxidized Zirconium Components Maintain a Smooth Articular Surface Except Following Hip Dislocation, J. Arthroplasty 36 (2021) 1437–1444. https://doi.org/10.1016/j.arth.2020.10.054.
  • [5] C. Hu, L. Chai, Z. Wang, T. Yang, Y. Tang, Z. Wang, W. Gong, K.L. Murty, Microstructure and wear resistance of zirconium manufactured by laser directed energy deposition, Int. J. Refract. Met. Hard Mater. 130 (2025) 107168. https://doi.org/10.1016/j.ijrmhm.2025.107168.
  • [6] X. Xiong, X. Li, J. Alexander, Z. Zhang, H. Dong, A Novel Catalytic Ceramic Conversion Treatment of Zr702 to Combat Wear, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16051763.
  • [7] S. Wang, Y. Zhang, H. Ming, J. Wang, J. Wang, E.H. Han, Impact of dissolved oxygen concentration on the coupling damage between fretting wear and corrosion on zirconium alloy cladding tube in high temperature pressurized water, Wear 572–573 (2025) 206058. https://doi.org/10.1016/j.wear.2025.206058.
  • [8] D. Zhu, X. Li, S. Chai, T.S. Chee, C. Kim, L. Li, D. Liu, Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy, J. Mech. Behav. Biomed. Mater. 165 (2025) 106951. https://doi.org/10.1016/j.jmbbm.2025.106951.
  • [9] N.C. Reger, V.K. Balla, M. Das, A.K. Bhargava, Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications, Surf. Coatings Technol. 334 (2018) 357–364. https://doi.org/10.1016/j.surfcoat.2017.11.064.
  • [10] V. Pawar, C. Weaver, S. Jani, Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications, Appl. Surf. Sci. 257 (2011) 6118–6124. https://doi.org/10.1016/j.apsusc.2011.02.014.
  • [11] R. V. Umretiya, B. Elward, D. Lee, M. Anderson, R.B. Rebak, J. V. Rojas, Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4, J. Nucl. Mater. 541 (2020) 50–65. https://doi.org/10.1016/j.jnucmat.2020.152420.
  • [12] B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors, Jom 70 (2018) 198–202. https://doi.org/10.1007/s11837-017-2643-9.
  • [13] H. Guan, L. Chai, X. Liu, Z. Li, G. Zhang, H. Wang, X. An, Microstructure, hardness and wear performance of quaternary CrNbTiZr refractory medium-entropy alloy coating fabricated on a commercial Zr alloy by pulsed laser cladding, J. Mater. Res. Technol. 24 (2023) 8877–8886. https://doi.org/10.1016/j.jmrt.2023.05.142.
  • [14] Y. Lu, Q. Shangguan, C. Huang, J. Pan, J. Zeng, A study on diffusion in hot-dip aluminizing, in: Adv. Mater. Res., 2010: pp. 1253–1256. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1253.
  • [15] Y. Yürektürk, M. Baydoğan, Characterization of ferritic ductile iron subjected to successive aluminizing and austempering, Surf. Coatings Technol. 347 (2018) 142–149. https://doi.org/10.1016/j.surfcoat.2018.04.083.
  • [16] R. Sitek, Influence of the high-temperature aluminizing process on the microstructure and corrosion resistance of the IN 740H nickel superalloy, Vacuum 167 (2019) 554–563. https://doi.org/10.1016/j.vacuum.2018.08.047.
  • [17] S. Sheikh, L. Gan, X. Montero, H. Murakami, S. Guo, Forming protective alumina scale for ductile refractory high-entropy alloys via aluminizing, Intermetallics 123 (2020) 106838. https://doi.org/10.1016/j.intermet.2020.106838.
  • [18] R. Pretorius, T.K. Marais, C.C. Theron, Thin film compound phase formation sequence: An effective heat of formation model, Mater. Sci. Reports 10 (1993) 1–83. https://doi.org/10.1016/0920-2307(93)90003-W.
  • [19] A. Laik, K. Bhanumurthy, G.B. Kale, Intermetallics in the Zr-Al diffusion zone, Intermetallics 12 (2004) 69–74. https://doi.org/10.1016/j.intermet.2003.09.002.
  • [20] A. Priyadarshi, T. Subroto, J. Nohava, S. Pavel, M. Conte, K. Pericleous, D. Eskin, I. Tzanakis, Investigation of mechanical properties of Al3Zr intermetallics at room and elevated temperatures using nanoindentation, Intermetallics 154 (2023) 107825. https://doi.org/10.1016/j.intermet.2023.107825.
  • [21] R. Priya, C. Mallika, U.K. Mudali, Wear and tribocorrosion behaviour of 304L SS, Zr-702, Zircaloy-4 and Ti-grade2, Wear 310 (2014) 90–100. https://doi.org/10.1016/j.wear.2013.11.051.
  • [22] K.M. Doleker, T. Yener, A. Erdogan, F. Yılmaz, G.C. Efe, Effect of Si and Cr on formation of aluminide coatings on Ti6Al4V alloy by low temperature aluminizing: Wear and oxidation behavior, Surf. Coatings Technol. 509 (2025). https://doi.org/10.1016/j.surfcoat.2025.132207.
  • [23] X. Wang, D. Qu, Y. Duan, M. Peng, Wear and corrosion properties of a B–Al composite layer on pure titanium, Ceram. Int. 48 (2022) 12038–12047. https://doi.org/10.1016/j.ceramint.2022.01.061.
  • [24] Y. Guo, Z. Wang, N. Li, S. Yang, Y. Wu, Y. Duan, A. Yang, L. Ma, S. Zheng, Y. Li, Microstructure , wear and corrosion behaviors of TC21 titanium alloy by solid powder-packing boriding and aluminizing, 36 (2025) 6387–6399. https://doi.org/10.1016/j.jmrt.2025.04.280.
  • [25] U. Gürol, Y. Altınay, A. Günen, Ö.S. Bölükbaşı, M. Koçak, G. Çam, Effect of powder-pack aluminizing on microstructure and oxidation resistance of wire arc additively manufactured stainless steels, Surf. Coatings Technol. 468 (2023). https://doi.org/10.1016/j.surfcoat.2023.129742.
  • [26] C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident-Tolerant fuel (ATF) claddings, Corros. Rev. 35 (2017) 141–165. https://doi.org/10.1515/corrrev-2017-0010.
  • [27] T.R. Netto, A. K. Evans, D. T. Goddard, J. L. Cooper, P. Kelly, Effects of sample bias on wear resistance of magnetron sputtered chromium coated zirconium alloy, Surf. Coatings Technol. 498 (2025) 131847. https://doi.org/10.1016/j.surfcoat.2025.131847.
There are 27 citations in total.

Details

Primary Language English
Subjects Tribology, Plating Technology
Journal Section Research Articles
Authors

Faiz Muhaffel 0000-0002-9814-7478

Early Pub Date August 26, 2025
Publication Date August 30, 2025
Submission Date June 5, 2025
Acceptance Date August 11, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Muhaffel, F. (2025). Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance. Manufacturing Technologies and Applications, 6(2), 227-238. https://doi.org/10.52795/mateca.1715207
AMA Muhaffel F. Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance. MATECA. August 2025;6(2):227-238. doi:10.52795/mateca.1715207
Chicago Muhaffel, Faiz. “Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance”. Manufacturing Technologies and Applications 6, no. 2 (August 2025): 227-38. https://doi.org/10.52795/mateca.1715207.
EndNote Muhaffel F (August 1, 2025) Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance. Manufacturing Technologies and Applications 6 2 227–238.
IEEE F. Muhaffel, “Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance”, MATECA, vol. 6, no. 2, pp. 227–238, 2025, doi: 10.52795/mateca.1715207.
ISNAD Muhaffel, Faiz. “Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance”. Manufacturing Technologies and Applications 6/2 (August2025), 227-238. https://doi.org/10.52795/mateca.1715207.
JAMA Muhaffel F. Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance. MATECA. 2025;6:227–238.
MLA Muhaffel, Faiz. “Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance”. Manufacturing Technologies and Applications, vol. 6, no. 2, 2025, pp. 227-38, doi:10.52795/mateca.1715207.
Vancouver Muhaffel F. Pack Aluminizing of Zirconium 702 Alloy to Improve Surface Hardness and Wear Resistance. MATECA. 2025;6(2):227-38.