Research Article
BibTex RIS Cite
Year 2023, , 129 - 137, 02.09.2023
https://doi.org/10.36753/mathenot.1141344

Abstract

References

  • [1] Özgür, N. Y., Ta¸s, N.: Some fixed-circle theorems on metric spaces. Bulletin of the Malaysian Mathematical Sciences Society. 42 (4), 1433-1449 (2019).
  • [2] Kaplan, E., Mlaiki, N., Ta¸s, N., Haque, S., Souayah, A. K.: Some fixed-circle results with different auxiliary functions. Journal of Function Spaces. 2022, 2775733 (2022).
  • [3] Mlaiki, N., Özgür, N., Ta¸s, N.: New fixed-circle results related to Fc-contractive and Fc-expanding mappings on metric spaces. Preprint arxiv:2101.10770 (2021).
  • [4] Özgür, N. Y., Ta¸s, N.: Some fixed-circle theorems and discontinuity at fixed circle. AIP Conference Proceedings. 1926, 020048 (2018).
  • [5] Özgür, N.: Fixed-disc results via simulation functions. Turkish Journal of Mathematics. 43 (6), 2794-2805 (2019).
  • [6] Pant, R. P., Özgür, N. Y., Ta¸s, N.: Discontinuity at fixed points with applications. Bulletin of the Belgian Mathematical Society - Simon Stevin. 26, 571-589 (2019).
  • [7] Pant, R. P., Özgür, N. Y., Ta¸s, N.: On discontinuity problem at fixed point. Bulletin of the Malaysian Mathematical Sciences Society. 43, 499-517 (2020).
  • [8] Pant, R. P., Özgür, N., Ta¸s, N., Pant, A., Joshi, M. C.: New results on discontinuity at fixed point. Journal of Fixed Point Theory and Applications. 22, 39 (2020).
  • [9] Ta¸s, N.: Bilateral-type solutions to the fixed-circle problem with rectified linear units application. Turkish Journal of Mathematics. 44 (4), 1330-1344 (2020).
  • [10] Özgür, N., Ta¸s, N.: Geometric properties of fixed points and simulation functions. Preprint arxiv:2102.05417 (2021).
  • [11] Erçınar, G. Z.: Some geometric properties of fixed points. Ph.D. thesis. Eski¸sehir Osmangazi University (2020).
  • [12] Joshi, M., Tomar, A., Padaliya, S. K.: Fixed point to fixed ellipse in metric spaces and discontinuous activation function. Applied Mathematics E-Notes. 21, 225-237 (2021).
  • [13] Aytimur, H., Ta¸s, N.: A geometric interpretation to fixed-point theory on Sb-metric spaces. Electronic Journal of Mathematical Analysis and Applications. 10 (2), 95-104 (2022).
  • [14] Ta¸s, N., Özgür, N.: New fixed-figure results on metric spaces. In: Fixed point theory and fractional calculus - Recent advances and applications. Springer, Singapore 33-62 (2022).
  • [15] Aytimur, H., Güvenç, ¸S., Ta¸s, N.: New fixed figure results with the notion of k-ellipse. Mathematica Moravica. 27 (1), 37-52 (2023).
  • [16] Kannan, R.: Some results on fixed points. Bulletin of the Calcutta Mathematical Society. 60, 71-76 (1968).
  • [17] Kannan, R.: Some results on fixed points. II. The American Mathematical Monthly. 76, 405-408 (1969).
  • [18] Meir, A., Keeler, E.: A theorem on contraction mappings. Journal of Mathematical Analysis and Applications. 28, 326-329 (1969).
  • [19] Karapınar, E.: Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Applications. 2 (2), 85-87 (2018).
  • [20] Karapınar, E.: Interpolative Kannan- Meir-Keeler type contraction. Advances in the Theory of Nonlinear Analysis and its Applications. 5 (4), 611-614 (2021).
  • [21] Ege, O.: Complex valued rectangular b-metric spaces and an application to linear equations. Journal of Nonlinear Sciences and Applications. 8 (6), 1014-1021 (2015).
  • [22] Ege, O.: Complex valued Gb-metric spaces. Journal of Computational Analysis and Applications. 21 (2), 363-368 (2016).
  • [23] Gupta, V., Ege, O., Saini, R., Sen, M. D. L.: Various fixed point results in complete Gb-metric spaces. Dynamic Systems and Applications. 30 (2), 277-293 (2021).

Interpolative $KMK$-Type Fixed-Figure Results

Year 2023, , 129 - 137, 02.09.2023
https://doi.org/10.36753/mathenot.1141344

Abstract

Fixed-figure problem has been introduced a generalization of fixed circle problem an investigated a geometric generalization of fixed point theory. In this sense, we prove new fixed-figure results with some illustrative examples on metric spaces. For this purpose, we use $KMK$-type contractions, that is, Kannan type and Meir-Keeler type contractions.

References

  • [1] Özgür, N. Y., Ta¸s, N.: Some fixed-circle theorems on metric spaces. Bulletin of the Malaysian Mathematical Sciences Society. 42 (4), 1433-1449 (2019).
  • [2] Kaplan, E., Mlaiki, N., Ta¸s, N., Haque, S., Souayah, A. K.: Some fixed-circle results with different auxiliary functions. Journal of Function Spaces. 2022, 2775733 (2022).
  • [3] Mlaiki, N., Özgür, N., Ta¸s, N.: New fixed-circle results related to Fc-contractive and Fc-expanding mappings on metric spaces. Preprint arxiv:2101.10770 (2021).
  • [4] Özgür, N. Y., Ta¸s, N.: Some fixed-circle theorems and discontinuity at fixed circle. AIP Conference Proceedings. 1926, 020048 (2018).
  • [5] Özgür, N.: Fixed-disc results via simulation functions. Turkish Journal of Mathematics. 43 (6), 2794-2805 (2019).
  • [6] Pant, R. P., Özgür, N. Y., Ta¸s, N.: Discontinuity at fixed points with applications. Bulletin of the Belgian Mathematical Society - Simon Stevin. 26, 571-589 (2019).
  • [7] Pant, R. P., Özgür, N. Y., Ta¸s, N.: On discontinuity problem at fixed point. Bulletin of the Malaysian Mathematical Sciences Society. 43, 499-517 (2020).
  • [8] Pant, R. P., Özgür, N., Ta¸s, N., Pant, A., Joshi, M. C.: New results on discontinuity at fixed point. Journal of Fixed Point Theory and Applications. 22, 39 (2020).
  • [9] Ta¸s, N.: Bilateral-type solutions to the fixed-circle problem with rectified linear units application. Turkish Journal of Mathematics. 44 (4), 1330-1344 (2020).
  • [10] Özgür, N., Ta¸s, N.: Geometric properties of fixed points and simulation functions. Preprint arxiv:2102.05417 (2021).
  • [11] Erçınar, G. Z.: Some geometric properties of fixed points. Ph.D. thesis. Eski¸sehir Osmangazi University (2020).
  • [12] Joshi, M., Tomar, A., Padaliya, S. K.: Fixed point to fixed ellipse in metric spaces and discontinuous activation function. Applied Mathematics E-Notes. 21, 225-237 (2021).
  • [13] Aytimur, H., Ta¸s, N.: A geometric interpretation to fixed-point theory on Sb-metric spaces. Electronic Journal of Mathematical Analysis and Applications. 10 (2), 95-104 (2022).
  • [14] Ta¸s, N., Özgür, N.: New fixed-figure results on metric spaces. In: Fixed point theory and fractional calculus - Recent advances and applications. Springer, Singapore 33-62 (2022).
  • [15] Aytimur, H., Güvenç, ¸S., Ta¸s, N.: New fixed figure results with the notion of k-ellipse. Mathematica Moravica. 27 (1), 37-52 (2023).
  • [16] Kannan, R.: Some results on fixed points. Bulletin of the Calcutta Mathematical Society. 60, 71-76 (1968).
  • [17] Kannan, R.: Some results on fixed points. II. The American Mathematical Monthly. 76, 405-408 (1969).
  • [18] Meir, A., Keeler, E.: A theorem on contraction mappings. Journal of Mathematical Analysis and Applications. 28, 326-329 (1969).
  • [19] Karapınar, E.: Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Applications. 2 (2), 85-87 (2018).
  • [20] Karapınar, E.: Interpolative Kannan- Meir-Keeler type contraction. Advances in the Theory of Nonlinear Analysis and its Applications. 5 (4), 611-614 (2021).
  • [21] Ege, O.: Complex valued rectangular b-metric spaces and an application to linear equations. Journal of Nonlinear Sciences and Applications. 8 (6), 1014-1021 (2015).
  • [22] Ege, O.: Complex valued Gb-metric spaces. Journal of Computational Analysis and Applications. 21 (2), 363-368 (2016).
  • [23] Gupta, V., Ege, O., Saini, R., Sen, M. D. L.: Various fixed point results in complete Gb-metric spaces. Dynamic Systems and Applications. 30 (2), 277-293 (2021).
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nihal Taş 0000-0002-4535-4019

Publication Date September 2, 2023
Submission Date July 6, 2022
Acceptance Date November 10, 2022
Published in Issue Year 2023

Cite

APA Taş, N. (2023). Interpolative $KMK$-Type Fixed-Figure Results. Mathematical Sciences and Applications E-Notes, 11(3), 129-137. https://doi.org/10.36753/mathenot.1141344
AMA Taş N. Interpolative $KMK$-Type Fixed-Figure Results. Math. Sci. Appl. E-Notes. September 2023;11(3):129-137. doi:10.36753/mathenot.1141344
Chicago Taş, Nihal. “Interpolative $KMK$-Type Fixed-Figure Results”. Mathematical Sciences and Applications E-Notes 11, no. 3 (September 2023): 129-37. https://doi.org/10.36753/mathenot.1141344.
EndNote Taş N (September 1, 2023) Interpolative $KMK$-Type Fixed-Figure Results. Mathematical Sciences and Applications E-Notes 11 3 129–137.
IEEE N. Taş, “Interpolative $KMK$-Type Fixed-Figure Results”, Math. Sci. Appl. E-Notes, vol. 11, no. 3, pp. 129–137, 2023, doi: 10.36753/mathenot.1141344.
ISNAD Taş, Nihal. “Interpolative $KMK$-Type Fixed-Figure Results”. Mathematical Sciences and Applications E-Notes 11/3 (September 2023), 129-137. https://doi.org/10.36753/mathenot.1141344.
JAMA Taş N. Interpolative $KMK$-Type Fixed-Figure Results. Math. Sci. Appl. E-Notes. 2023;11:129–137.
MLA Taş, Nihal. “Interpolative $KMK$-Type Fixed-Figure Results”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 3, 2023, pp. 129-37, doi:10.36753/mathenot.1141344.
Vancouver Taş N. Interpolative $KMK$-Type Fixed-Figure Results. Math. Sci. Appl. E-Notes. 2023;11(3):129-37.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.