Research Article
BibTex RIS Cite

The Farey Sum of Pythagorean and Eisenstein Triples

Year 2024, , 28 - 35, 28.01.2024
https://doi.org/10.36753/mathenot.1316554

Abstract

A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple $(1, 0, 1)$. The case of Eisenstein triples is also presented.

References

  • [1] Kramer, Jürg., Pippich, A. M. V.: Snapshots of modern mathematics from Oberwolfach: Special values of zeta functions and areas of triangles. Notices of American Mathematical Society, 63(8), 917-922 (2016).
  • [2] Bonahon, F.: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots. American Mathematical Society; Princeton, NJ: Institute for Advanced Study. 2009.
  • [3] Katok, S., Ugarcovici I.: Symbolic dynamics for the modular surface and beyond. Bulletin of American Mathematical Society, New Ser. 44(1), 87-132 (2007).
  • [4] Hatcher, A.: Topology of Numbers. American Mathematical Society. 2022.
  • [5] Jitman, S., Sangwisut, E.: The group of primitive Pythagorean triples and perplex numbers. Mathematics Magazine. 95(4), 285-293 (2022).
  • [6] Crasmareanu, M.: The diagonalization map as submersion, the cubic equation as immersion and Euclidean polynomials. Mediterranean Journal of Mathematics. 19(2), 65 (2022).
  • [7] Barron, E. N.: Game Theory: An Introduction. 2nd. Revised and Enlarged ed., JohnWiley & Sons. 2013.
  • [8] Crasmareanu, M.: Conics from the Cartan decomposition of SO(2; 1). Mathematics. 11(7), 1580 (2023).
  • [9] Pluta, K., Roussillon, T., Coeurjolly, D., Romon P., Kenmochi, Y., Ostromoukhov V.: Characterization of bijective digitized rotations on the hexagonal grid. Journal of Mathematical Imaging and Vision. 60(5), 707-716 (2018).
Year 2024, , 28 - 35, 28.01.2024
https://doi.org/10.36753/mathenot.1316554

Abstract

References

  • [1] Kramer, Jürg., Pippich, A. M. V.: Snapshots of modern mathematics from Oberwolfach: Special values of zeta functions and areas of triangles. Notices of American Mathematical Society, 63(8), 917-922 (2016).
  • [2] Bonahon, F.: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots. American Mathematical Society; Princeton, NJ: Institute for Advanced Study. 2009.
  • [3] Katok, S., Ugarcovici I.: Symbolic dynamics for the modular surface and beyond. Bulletin of American Mathematical Society, New Ser. 44(1), 87-132 (2007).
  • [4] Hatcher, A.: Topology of Numbers. American Mathematical Society. 2022.
  • [5] Jitman, S., Sangwisut, E.: The group of primitive Pythagorean triples and perplex numbers. Mathematics Magazine. 95(4), 285-293 (2022).
  • [6] Crasmareanu, M.: The diagonalization map as submersion, the cubic equation as immersion and Euclidean polynomials. Mediterranean Journal of Mathematics. 19(2), 65 (2022).
  • [7] Barron, E. N.: Game Theory: An Introduction. 2nd. Revised and Enlarged ed., JohnWiley & Sons. 2013.
  • [8] Crasmareanu, M.: Conics from the Cartan decomposition of SO(2; 1). Mathematics. 11(7), 1580 (2023).
  • [9] Pluta, K., Roussillon, T., Coeurjolly, D., Romon P., Kenmochi, Y., Ostromoukhov V.: Characterization of bijective digitized rotations on the hexagonal grid. Journal of Mathematical Imaging and Vision. 60(5), 707-716 (2018).
There are 9 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Articles
Authors

Mircea Crasmareanu 0000-0002-5230-2751

Early Pub Date December 8, 2023
Publication Date January 28, 2024
Submission Date June 19, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2024

Cite

APA Crasmareanu, M. (2024). The Farey Sum of Pythagorean and Eisenstein Triples. Mathematical Sciences and Applications E-Notes, 12(1), 28-35. https://doi.org/10.36753/mathenot.1316554
AMA Crasmareanu M. The Farey Sum of Pythagorean and Eisenstein Triples. Math. Sci. Appl. E-Notes. January 2024;12(1):28-35. doi:10.36753/mathenot.1316554
Chicago Crasmareanu, Mircea. “The Farey Sum of Pythagorean and Eisenstein Triples”. Mathematical Sciences and Applications E-Notes 12, no. 1 (January 2024): 28-35. https://doi.org/10.36753/mathenot.1316554.
EndNote Crasmareanu M (January 1, 2024) The Farey Sum of Pythagorean and Eisenstein Triples. Mathematical Sciences and Applications E-Notes 12 1 28–35.
IEEE M. Crasmareanu, “The Farey Sum of Pythagorean and Eisenstein Triples”, Math. Sci. Appl. E-Notes, vol. 12, no. 1, pp. 28–35, 2024, doi: 10.36753/mathenot.1316554.
ISNAD Crasmareanu, Mircea. “The Farey Sum of Pythagorean and Eisenstein Triples”. Mathematical Sciences and Applications E-Notes 12/1 (January 2024), 28-35. https://doi.org/10.36753/mathenot.1316554.
JAMA Crasmareanu M. The Farey Sum of Pythagorean and Eisenstein Triples. Math. Sci. Appl. E-Notes. 2024;12:28–35.
MLA Crasmareanu, Mircea. “The Farey Sum of Pythagorean and Eisenstein Triples”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 1, 2024, pp. 28-35, doi:10.36753/mathenot.1316554.
Vancouver Crasmareanu M. The Farey Sum of Pythagorean and Eisenstein Triples. Math. Sci. Appl. E-Notes. 2024;12(1):28-35.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.