Research Article
BibTex RIS Cite

Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means

Year 2024, , 196 - 206, 08.12.2024
https://doi.org/10.36753/mathenot.1471156

Abstract

The main purpose in this study is to investigate some topological and algebraic properties of the absolutely double series spaces $\left\vert C_{1,1}\right\vert _{k}$ defined by combining the first order Cesaro means with the concept of absolute summability for $k\geq 1$. Beside this, we determine the $\alpha -$dual of the space $\left\vert C_{1,1}\right\vert _{1}$ and the $\beta \left( bp\right) -$ and $\gamma -$duals of the spaces $% \left\vert C_{1,1}\right\vert _{k}$ for $k\geq 1.$ Finally, we characterize some new four-dimensional matrix classes $\left( \left\vert C_{1,1}\right\vert _{k},\upsilon \right) ,$ $\left( \left\vert C_{1,1}\right\vert _{1},\upsilon \right) $, $\left( \left\vert C_{1,1}\right\vert _{1},\mathcal{L}_{k}\right) ,$ $\left( \left\vert C_{1,1}\right\vert _{k},\mathcal{L}_{u}\right) ,$ $\left( \mathcal{L} _{u},\left\vert C_{1,1}\right\vert _{k}\right) $ and $\left( \mathcal{L} _{k},\left\vert C_{1,1}\right\vert _{1}\right) $, where $\upsilon \in \left\{ \mathcal{M}_{u},\mathcal{C}_{bp}\right\} $ for $1\leq k<\infty $. Hence, some important results concerned on Ces\`{a}ro matrix summation methods have been extended to double sequences.

References

  • [1] Bromwich, T. J.:An Introduction to the Theory of Infinite Series. Macmillan, New York, NY, USA, (1965).
  • [2] Demiriz, S., Duyar, O.:Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics. 3(3), 85–100 (2015).
  • [3] Demiriz, S., Duyar, O.:Domain of the generalized double Cesàro matrix in some paranormed spaces of double sequences. Tbilisi Mathematical Journal. 10(2), 43-56 (2017).
  • [4] Demiriz, S., Erdem, S.:Domain of Euler-totient matrix operator in the space Lp. Korean Journal of Mathematics. 28(2), 361-378 (2020).
  • [5] Demiriz, S., Erdem, S.:Domain of binomial matrix in some spaces of double sequences. Punjab University Journal of Mathematics. 52(11), 65-79 (2020).
  • [6] Erdem, S., Demiriz, S.:A study on strongly almost convergent and strongly almost null binomial double sequence spaces. Fundamental Journal of Mathematics and Applications. 4(4), 271-279 (2021).
  • [7] Erdem, S., Demiriz, S.:A new RH-regular matrix derived by Jordan’s function and its domains on some double sequence spaces. Journal of Function Spaces. 2021, Article ID 5594751, 9 pages, (2021).
  • [8] Erdem, S., Demiriz, S.:q−Cesàro double sequence space ˜ Lq derived by q−analog.Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica. 22, 111-126 (2023).
  • [9] Móricz, F.:Extensions of the spaces c and c0 from single to double sequences. Acta Mathematica Hungarica. 57(1-2), 129–136 (1991).
  • [10] Móricz, F., Rhoades, B. E.:Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 104(2), 283–294 (1988).
  • [11] Mursaleen, M.:Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications. 293(2), 523–531 (2004).
  • [12] Mursaleen, M., Ba¸sar, F.:Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica. 51, 335-356 (2014).
  • [13] Hazar Güleç, G. C.:Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization. 41(1), 1-15 (2020).
  • [14] Hazar Güleç, G. C.:Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices. 13(3), 809-822 (2019).
  • [15] Hazar Güleç, G. C., Sarigöl, M. A.:Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae. 43(1), 117-130 (2020).
  • [16] Sarıgöl, M. A.:On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae. 44(6), 755-764 (2021).
  • [17] Başar, F., Sever, Y.:The space Lk of double sequences. Mathematical Journal of Okayama University. 51, 149–157 (2009).
  • [18] Zeltser, M.:On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica. 95(3), 225-242 (2002).
  • [19] Hardy, G. H.:On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society. 19, 86–95 (1917).
  • [20] Rhoades, B. E.:Absolute comparison theorems for double weighted mean and double Cesàro means. Mathematica Slovaca. 48, 285-291 (1998).
  • [21] Boos, J.:Classical and Modern Methods in Summability. Oxford University Press, New York, (2000).
  • [22] Yeşilkayagil, M., Ba¸sar, F.:On the domain of Riesz mean in the space L∗ k. Filomat. 31(4), 925-940 (2017).
  • [23] Sarıgöl, M. A.:Four dimensional matrix mappings on double summable spaces. Filomat. 37(4), 1277-1290 (2023).
Year 2024, , 196 - 206, 08.12.2024
https://doi.org/10.36753/mathenot.1471156

Abstract

References

  • [1] Bromwich, T. J.:An Introduction to the Theory of Infinite Series. Macmillan, New York, NY, USA, (1965).
  • [2] Demiriz, S., Duyar, O.:Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics. 3(3), 85–100 (2015).
  • [3] Demiriz, S., Duyar, O.:Domain of the generalized double Cesàro matrix in some paranormed spaces of double sequences. Tbilisi Mathematical Journal. 10(2), 43-56 (2017).
  • [4] Demiriz, S., Erdem, S.:Domain of Euler-totient matrix operator in the space Lp. Korean Journal of Mathematics. 28(2), 361-378 (2020).
  • [5] Demiriz, S., Erdem, S.:Domain of binomial matrix in some spaces of double sequences. Punjab University Journal of Mathematics. 52(11), 65-79 (2020).
  • [6] Erdem, S., Demiriz, S.:A study on strongly almost convergent and strongly almost null binomial double sequence spaces. Fundamental Journal of Mathematics and Applications. 4(4), 271-279 (2021).
  • [7] Erdem, S., Demiriz, S.:A new RH-regular matrix derived by Jordan’s function and its domains on some double sequence spaces. Journal of Function Spaces. 2021, Article ID 5594751, 9 pages, (2021).
  • [8] Erdem, S., Demiriz, S.:q−Cesàro double sequence space ˜ Lq derived by q−analog.Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica. 22, 111-126 (2023).
  • [9] Móricz, F.:Extensions of the spaces c and c0 from single to double sequences. Acta Mathematica Hungarica. 57(1-2), 129–136 (1991).
  • [10] Móricz, F., Rhoades, B. E.:Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 104(2), 283–294 (1988).
  • [11] Mursaleen, M.:Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications. 293(2), 523–531 (2004).
  • [12] Mursaleen, M., Ba¸sar, F.:Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica. 51, 335-356 (2014).
  • [13] Hazar Güleç, G. C.:Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization. 41(1), 1-15 (2020).
  • [14] Hazar Güleç, G. C.:Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices. 13(3), 809-822 (2019).
  • [15] Hazar Güleç, G. C., Sarigöl, M. A.:Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae. 43(1), 117-130 (2020).
  • [16] Sarıgöl, M. A.:On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae. 44(6), 755-764 (2021).
  • [17] Başar, F., Sever, Y.:The space Lk of double sequences. Mathematical Journal of Okayama University. 51, 149–157 (2009).
  • [18] Zeltser, M.:On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica. 95(3), 225-242 (2002).
  • [19] Hardy, G. H.:On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society. 19, 86–95 (1917).
  • [20] Rhoades, B. E.:Absolute comparison theorems for double weighted mean and double Cesàro means. Mathematica Slovaca. 48, 285-291 (1998).
  • [21] Boos, J.:Classical and Modern Methods in Summability. Oxford University Press, New York, (2000).
  • [22] Yeşilkayagil, M., Ba¸sar, F.:On the domain of Riesz mean in the space L∗ k. Filomat. 31(4), 925-940 (2017).
  • [23] Sarıgöl, M. A.:Four dimensional matrix mappings on double summable spaces. Filomat. 37(4), 1277-1290 (2023).
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Okan Bodur 0000-0002-6403-4627

Canan Hazar Gulec 0000-0002-8825-5555

Early Pub Date July 31, 2024
Publication Date December 8, 2024
Submission Date April 19, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024

Cite

APA Bodur, O., & Gulec, C. H. (2024). Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Mathematical Sciences and Applications E-Notes, 12(4), 196-206. https://doi.org/10.36753/mathenot.1471156
AMA Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. December 2024;12(4):196-206. doi:10.36753/mathenot.1471156
Chicago Bodur, Okan, and Canan Hazar Gulec. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes 12, no. 4 (December 2024): 196-206. https://doi.org/10.36753/mathenot.1471156.
EndNote Bodur O, Gulec CH (December 1, 2024) Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Mathematical Sciences and Applications E-Notes 12 4 196–206.
IEEE O. Bodur and C. H. Gulec, “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”, Math. Sci. Appl. E-Notes, vol. 12, no. 4, pp. 196–206, 2024, doi: 10.36753/mathenot.1471156.
ISNAD Bodur, Okan - Gulec, Canan Hazar. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes 12/4 (December 2024), 196-206. https://doi.org/10.36753/mathenot.1471156.
JAMA Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. 2024;12:196–206.
MLA Bodur, Okan and Canan Hazar Gulec. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 4, 2024, pp. 196-0, doi:10.36753/mathenot.1471156.
Vancouver Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. 2024;12(4):196-20.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.