Research Article
BibTex RIS Cite
Year 2015, , 18 - 24, 15.05.2015
https://doi.org/10.36753/mathenot.421203

Abstract

References

  • [1] Ernst, T., q−Pascal and q−Bernoulli matrices, an Umbral approach. Technical Report, Uppsala University, 2008.
  • [2] Kac, V., Cheung P., Quantum Calculus. Springer, New York, 2002.
  • [3] Jury, E. I., Theory and Application of the Z-Transform Method. Krieger Publishing Company, New York, 1973.
  • [4] Pita R.V., Claudio de J., Some Number Arrays Related to Pascal and Lucas Triangles. J. Integer Seq., 16 2013.
  • [5] Vretblad A., Fourier analysis and its applications. Springer-Verlag New York, 2003.
  • [6] Weisstein, Eric W. Z-Transform. From MathWorld-A Wolfram Web Resource, available at http://mathworld.wolfram.com/Z-Transform.html.

SOME q−MATRICES RELATED TO Z−TRANSFORM

Year 2015, , 18 - 24, 15.05.2015
https://doi.org/10.36753/mathenot.421203

Abstract

In a recent paper, Claudio de J. Pita Ruiz V. introduced number
arrays of coefficients. In this paper, we study the Z−transform of a special
q−number array. Our goal is to bring together the concepts of convolutions
and special q−matrices.

References

  • [1] Ernst, T., q−Pascal and q−Bernoulli matrices, an Umbral approach. Technical Report, Uppsala University, 2008.
  • [2] Kac, V., Cheung P., Quantum Calculus. Springer, New York, 2002.
  • [3] Jury, E. I., Theory and Application of the Z-Transform Method. Krieger Publishing Company, New York, 1973.
  • [4] Pita R.V., Claudio de J., Some Number Arrays Related to Pascal and Lucas Triangles. J. Integer Seq., 16 2013.
  • [5] Vretblad A., Fourier analysis and its applications. Springer-Verlag New York, 2003.
  • [6] Weisstein, Eric W. Z-Transform. From MathWorld-A Wolfram Web Resource, available at http://mathworld.wolfram.com/Z-Transform.html.
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Yesıl

Naim Tuglu

Can Kızılateş

Publication Date May 15, 2015
Submission Date January 1, 2014
Published in Issue Year 2015

Cite

APA Yesıl, F., Tuglu, N., & Kızılateş, C. (2015). SOME q−MATRICES RELATED TO Z−TRANSFORM. Mathematical Sciences and Applications E-Notes, 3(1), 18-24. https://doi.org/10.36753/mathenot.421203
AMA Yesıl F, Tuglu N, Kızılateş C. SOME q−MATRICES RELATED TO Z−TRANSFORM. Math. Sci. Appl. E-Notes. May 2015;3(1):18-24. doi:10.36753/mathenot.421203
Chicago Yesıl, Fatma, Naim Tuglu, and Can Kızılateş. “SOME q−MATRICES RELATED TO Z−TRANSFORM”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 18-24. https://doi.org/10.36753/mathenot.421203.
EndNote Yesıl F, Tuglu N, Kızılateş C (May 1, 2015) SOME q−MATRICES RELATED TO Z−TRANSFORM. Mathematical Sciences and Applications E-Notes 3 1 18–24.
IEEE F. Yesıl, N. Tuglu, and C. Kızılateş, “SOME q−MATRICES RELATED TO Z−TRANSFORM”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 18–24, 2015, doi: 10.36753/mathenot.421203.
ISNAD Yesıl, Fatma et al. “SOME q−MATRICES RELATED TO Z−TRANSFORM”. Mathematical Sciences and Applications E-Notes 3/1 (May 2015), 18-24. https://doi.org/10.36753/mathenot.421203.
JAMA Yesıl F, Tuglu N, Kızılateş C. SOME q−MATRICES RELATED TO Z−TRANSFORM. Math. Sci. Appl. E-Notes. 2015;3:18–24.
MLA Yesıl, Fatma et al. “SOME q−MATRICES RELATED TO Z−TRANSFORM”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 18-24, doi:10.36753/mathenot.421203.
Vancouver Yesıl F, Tuglu N, Kızılateş C. SOME q−MATRICES RELATED TO Z−TRANSFORM. Math. Sci. Appl. E-Notes. 2015;3(1):18-24.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.