Research Article
BibTex RIS Cite
Year 2015, , 53 - 57, 15.05.2015
https://doi.org/10.36753/mathenot.421210

Abstract

References

  • [1] Bieberbach, L., Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbil- ¨ dung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl., (1916), 940-955.
  • [2] de Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica 154 (1) (1985), 137-152.
  • [3] Duren, P.L., Univalent Functions, Die Grundlehren der mathematischen Wiesseschaften 259. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  • [4] Koebe, P., Uber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen ¨ mit imaginarer Substitutionsgruppe, Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl.(1909), 68-76.
  • [5] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103-121.
  • [6] Pommerenke, Chr., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  • [7] Schiffer, M., A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.

THE SCHIFFER’S THEOREM RE-VISITED

Year 2015, , 53 - 57, 15.05.2015
https://doi.org/10.36753/mathenot.421210

Abstract

In this paper, we consider Schiffer’s differential equation for the
functions in the class of normalized analytic and univalent functions which
maximize the second and the third coefficients. 

References

  • [1] Bieberbach, L., Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbil- ¨ dung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl., (1916), 940-955.
  • [2] de Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica 154 (1) (1985), 137-152.
  • [3] Duren, P.L., Univalent Functions, Die Grundlehren der mathematischen Wiesseschaften 259. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  • [4] Koebe, P., Uber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen ¨ mit imaginarer Substitutionsgruppe, Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl.(1909), 68-76.
  • [5] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103-121.
  • [6] Pommerenke, Chr., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  • [7] Schiffer, M., A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.
There are 7 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Faruk Uçar

Yusuf Avcı This is me

Publication Date May 15, 2015
Submission Date October 12, 2014
Published in Issue Year 2015

Cite

APA Uçar, F., & Avcı, Y. (2015). THE SCHIFFER’S THEOREM RE-VISITED. Mathematical Sciences and Applications E-Notes, 3(1), 53-57. https://doi.org/10.36753/mathenot.421210
AMA Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. May 2015;3(1):53-57. doi:10.36753/mathenot.421210
Chicago Uçar, Faruk, and Yusuf Avcı. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 53-57. https://doi.org/10.36753/mathenot.421210.
EndNote Uçar F, Avcı Y (May 1, 2015) THE SCHIFFER’S THEOREM RE-VISITED. Mathematical Sciences and Applications E-Notes 3 1 53–57.
IEEE F. Uçar and Y. Avcı, “THE SCHIFFER’S THEOREM RE-VISITED”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 53–57, 2015, doi: 10.36753/mathenot.421210.
ISNAD Uçar, Faruk - Avcı, Yusuf. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes 3/1 (May 2015), 53-57. https://doi.org/10.36753/mathenot.421210.
JAMA Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. 2015;3:53–57.
MLA Uçar, Faruk and Yusuf Avcı. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 53-57, doi:10.36753/mathenot.421210.
Vancouver Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. 2015;3(1):53-7.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.