Research Article
BibTex RIS Cite
Year 2016, , 1 - 13, 30.10.2016
https://doi.org/10.36753/mathenot.421439

Abstract

References

  • [1] Ali, A. T., Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, Vol.2, pp.30-36, 2010.
  • [2] Blaschke, W., Differential Geometrie and Geometrischke Grundlagen ven Einsteins Relativitasttheorie Dover. New York. 1945
  • [3] Dimentberg F.M (1965) The Screw Calculus and its Applications in Mechanics. English translation: AD680993, Clearinghouse for Federal and Scientific Technical Information, (Izdat. Nauka, Moscow,USSR)
  • [4] Hacisalihoglu H.H (1983) Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi Fen-Edb Fakültesi
  • [5] Kahraman, T., Uğurlu, H. H., Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes.(Accepted)
  • [6] Kucuk A, Gursoy O (2004) On the invariants of Bertrand trajectory surface offsets. App Math and Comp 151:763-773.
  • [7] O’Neill B (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press London
  • [8] Onder, M., Ugurlu, H.H., Dual Darboux Frame of a Spacelike Ruled Surface and Darboux Approach to Mannheim Offsets of Spacelike Ruled Surfaces, arXiv:1108.6076[math.DG]
  • [9] Turgut, M., Yilmaz, S., Smarandache Curves in Minkowski Space-time, Int. J. Math. Comb., 3 (2008) 51-55.
  • [10] Ugurlu H.H, Çaliskan A (1996) The Study Mapping for Directed Spacelike and Timelike Lines in Minkowski 3-Space R_1^3. Mathematical and Computational Applications 1(3.2):142-148
  • [11] Ugurlu H.H, Çaliskan A (2012) Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi. Celal Bayar Üniversitesi Yayınları Yayın No: 0006
  • [12] Veldkamp G.R (1976) On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics. Mechanism and Mach Theory 11:141-156

Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere

Year 2016, , 1 - 13, 30.10.2016
https://doi.org/10.36753/mathenot.421439

Abstract


References

  • [1] Ali, A. T., Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, Vol.2, pp.30-36, 2010.
  • [2] Blaschke, W., Differential Geometrie and Geometrischke Grundlagen ven Einsteins Relativitasttheorie Dover. New York. 1945
  • [3] Dimentberg F.M (1965) The Screw Calculus and its Applications in Mechanics. English translation: AD680993, Clearinghouse for Federal and Scientific Technical Information, (Izdat. Nauka, Moscow,USSR)
  • [4] Hacisalihoglu H.H (1983) Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi Fen-Edb Fakültesi
  • [5] Kahraman, T., Uğurlu, H. H., Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes.(Accepted)
  • [6] Kucuk A, Gursoy O (2004) On the invariants of Bertrand trajectory surface offsets. App Math and Comp 151:763-773.
  • [7] O’Neill B (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press London
  • [8] Onder, M., Ugurlu, H.H., Dual Darboux Frame of a Spacelike Ruled Surface and Darboux Approach to Mannheim Offsets of Spacelike Ruled Surfaces, arXiv:1108.6076[math.DG]
  • [9] Turgut, M., Yilmaz, S., Smarandache Curves in Minkowski Space-time, Int. J. Math. Comb., 3 (2008) 51-55.
  • [10] Ugurlu H.H, Çaliskan A (1996) The Study Mapping for Directed Spacelike and Timelike Lines in Minkowski 3-Space R_1^3. Mathematical and Computational Applications 1(3.2):142-148
  • [11] Ugurlu H.H, Çaliskan A (2012) Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi. Celal Bayar Üniversitesi Yayınları Yayın No: 0006
  • [12] Veldkamp G.R (1976) On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics. Mechanism and Mach Theory 11:141-156
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tanju Kahraman

Hasan Hüseyin Uğurlu

Publication Date October 30, 2016
Submission Date August 26, 2015
Published in Issue Year 2016

Cite

APA Kahraman, T., & Uğurlu, H. H. (2016). Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Mathematical Sciences and Applications E-Notes, 4(2), 1-13. https://doi.org/10.36753/mathenot.421439
AMA Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. October 2016;4(2):1-13. doi:10.36753/mathenot.421439
Chicago Kahraman, Tanju, and Hasan Hüseyin Uğurlu. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes 4, no. 2 (October 2016): 1-13. https://doi.org/10.36753/mathenot.421439.
EndNote Kahraman T, Uğurlu HH (October 1, 2016) Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Mathematical Sciences and Applications E-Notes 4 2 1–13.
IEEE T. Kahraman and H. H. Uğurlu, “Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere”, Math. Sci. Appl. E-Notes, vol. 4, no. 2, pp. 1–13, 2016, doi: 10.36753/mathenot.421439.
ISNAD Kahraman, Tanju - Uğurlu, Hasan Hüseyin. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes 4/2 (October 2016), 1-13. https://doi.org/10.36753/mathenot.421439.
JAMA Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. 2016;4:1–13.
MLA Kahraman, Tanju and Hasan Hüseyin Uğurlu. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 2, 2016, pp. 1-13, doi:10.36753/mathenot.421439.
Vancouver Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. 2016;4(2):1-13.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.