Research Article
BibTex RIS Cite
Year 2020, , 100 - 104, 20.03.2020
https://doi.org/10.36753/mathenot.585735

Abstract

References

  • C. Huygens, Oeuvres Completes, Soci´et´e Hollondaise des Sciences, Haga, 1888-1940.
  • Y. J. Bagul and C. Chesneau, Refined forms of Oppenheim and Cusa-Huygens type inequalities, 2019. hal-01972893v2
  • B. Maleˇsevi´c, T. Lutovac, M. Raˇsajski and C. Mortici, Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Advances in Difference Equations, 2018, 2018:90.
  • C. Mortici, The natural approach of Wilker-Cusa-Huygens Inequalities, Math. Inequal. Appl., Volume 14, Number 3, 2011, pp. 535 -541.
  • E. Neuman and J. S´andor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl., Volume 13, Number 4, 2010, pp. 715-723.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
  • B. A. Bhayo, R. Kl´en and J. S´andor, New Trigonometric and Hyperbolic Inequalities, Miskolc Mathematical Notes, Volume 18, Number 1, 2017, pp. 125-137.
  • J. S´andor, Sharp Cusa-Huygens and related inequalities, Notes on Number Theory and Discrete Mathematics, Volume 19, Number 1, 2013, pp. 50-54.
  • Y. J. Bagul and C. Chesneau, Some new simple inequalities involving exponential, trigonometric and hyperbolic functions, Preprint, hal-01930521, 2018.

About Trigonometric-Polynomial Bounds of Sinc Function

Year 2020, , 100 - 104, 20.03.2020
https://doi.org/10.36753/mathenot.585735

Abstract

 In this article, we establish sharp trigonometric-polynomial bounds for unnormalized sinc function.

References

  • C. Huygens, Oeuvres Completes, Soci´et´e Hollondaise des Sciences, Haga, 1888-1940.
  • Y. J. Bagul and C. Chesneau, Refined forms of Oppenheim and Cusa-Huygens type inequalities, 2019. hal-01972893v2
  • B. Maleˇsevi´c, T. Lutovac, M. Raˇsajski and C. Mortici, Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Advances in Difference Equations, 2018, 2018:90.
  • C. Mortici, The natural approach of Wilker-Cusa-Huygens Inequalities, Math. Inequal. Appl., Volume 14, Number 3, 2011, pp. 535 -541.
  • E. Neuman and J. S´andor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl., Volume 13, Number 4, 2010, pp. 715-723.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
  • B. A. Bhayo, R. Kl´en and J. S´andor, New Trigonometric and Hyperbolic Inequalities, Miskolc Mathematical Notes, Volume 18, Number 1, 2017, pp. 125-137.
  • J. S´andor, Sharp Cusa-Huygens and related inequalities, Notes on Number Theory and Discrete Mathematics, Volume 19, Number 1, 2013, pp. 50-54.
  • Y. J. Bagul and C. Chesneau, Some new simple inequalities involving exponential, trigonometric and hyperbolic functions, Preprint, hal-01930521, 2018.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ramkrishna Dhaigude This is me 0000-0001-8510-5271

Christophe Chesneau 0000-0002-1522-9292

Yogesh Bagul 0000-0002-8331-3920

Publication Date March 20, 2020
Submission Date July 2, 2019
Acceptance Date February 17, 2020
Published in Issue Year 2020

Cite

APA Dhaigude, R., Chesneau, C., & Bagul, Y. (2020). About Trigonometric-Polynomial Bounds of Sinc Function. Mathematical Sciences and Applications E-Notes, 8(1), 100-104. https://doi.org/10.36753/mathenot.585735
AMA Dhaigude R, Chesneau C, Bagul Y. About Trigonometric-Polynomial Bounds of Sinc Function. Math. Sci. Appl. E-Notes. March 2020;8(1):100-104. doi:10.36753/mathenot.585735
Chicago Dhaigude, Ramkrishna, Christophe Chesneau, and Yogesh Bagul. “About Trigonometric-Polynomial Bounds of Sinc Function”. Mathematical Sciences and Applications E-Notes 8, no. 1 (March 2020): 100-104. https://doi.org/10.36753/mathenot.585735.
EndNote Dhaigude R, Chesneau C, Bagul Y (March 1, 2020) About Trigonometric-Polynomial Bounds of Sinc Function. Mathematical Sciences and Applications E-Notes 8 1 100–104.
IEEE R. Dhaigude, C. Chesneau, and Y. Bagul, “About Trigonometric-Polynomial Bounds of Sinc Function”, Math. Sci. Appl. E-Notes, vol. 8, no. 1, pp. 100–104, 2020, doi: 10.36753/mathenot.585735.
ISNAD Dhaigude, Ramkrishna et al. “About Trigonometric-Polynomial Bounds of Sinc Function”. Mathematical Sciences and Applications E-Notes 8/1 (March 2020), 100-104. https://doi.org/10.36753/mathenot.585735.
JAMA Dhaigude R, Chesneau C, Bagul Y. About Trigonometric-Polynomial Bounds of Sinc Function. Math. Sci. Appl. E-Notes. 2020;8:100–104.
MLA Dhaigude, Ramkrishna et al. “About Trigonometric-Polynomial Bounds of Sinc Function”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 1, 2020, pp. 100-4, doi:10.36753/mathenot.585735.
Vancouver Dhaigude R, Chesneau C, Bagul Y. About Trigonometric-Polynomial Bounds of Sinc Function. Math. Sci. Appl. E-Notes. 2020;8(1):100-4.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.