Research Article
BibTex RIS Cite
Year 2020, , 15 - 20, 15.10.2020
https://doi.org/10.36753/mathenot.647458

Abstract

References

  • [1] Açıkgöz, A., Ta¸s, N.: Some new mixed soft sets. Mathematical Sciences and Applications E-Notes. 2 (2), 105-118 (2014).
  • [2] Açıkgöz, A., Ta¸s, N. A., Noiri, T.: A decomposition of some types of mixed soft continuity in soft topological spaces. Filomat. 30 (2), 379-385 (2016).
  • [3] Ahmad, B., Kharal, A.: On fuzzy soft sets. Advances in Fuzzy Systems. 2009, 6 pages, Article ID 586507 (2009).
  • [4] Alcantud, J. C. R., Rambaud, S. C., Torrecillas, M. J. M.: Valuation fuzzy soft sets: a flexible fuzzy soft set based decision making procedure for the valuation of assets. Symmetry 9 (11), 253 (2017).
  • [5] Anitha, M., Selvi, R., Thangavelu, P.: Pasting lemmas for g-continuous functions. Missouri Journal of Mathematical Sciences. 21 (1), 28-33 (2009).
  • [6] Björn, A. Martio, O.: Pasting lemmas and characterizations of boundary regularity for quasiminimizers. Results in Mathematics. 55, 265-279 (2009).
  • [7] Csaszar, A.: Mixed constructions for generalized topologies. Acta Mathematica Hungarica. 122 (1-2), 153-159 (2009).
  • [8] Demir, İ., Özbakır, O. B.: Some properties of fuzzy soft proximity spaces. The Scientific World Journal. 2015, 10 pages, Article ID 752634 (2015).
  • [9] Demir. İ., Özbakır, O. B.: An extension of Lowen’s uniformity to the fuzzy soft sets. Konuralp Journal of Mathematics. 6 (2), 321-331 (2018).
  • [10] Ergül, Z. G., Yüksel, ¸S.: A new type of soft covering based rough sets applied to multicriteria group decision making for medical diagnosis. Mathematical Sciences and Applications E-Notes. 7 (1), 28-38 (2019).
  • [11] Gnanambal, Y., Balachandran, K.: On gpr-continuous functions in topological spaces. Indian Journal of Pure and Applied Mathematics. 30 (6), 581-593 (1999).
  • [12] İrkin, R., Özgür, N. Y., Taş, N.: Optimization of lactic acid bacteria viability using fuzzy soft set modelling. An International Journal of Optimization and Control: Theories and Applications (IJOCTA). 8 (2), 266-275 (2018).
  • [13] Kalaichelvi, Dr. A., Malini, P. H.: Application of fuzzy soft sets to investment decision making problem. International Journal of Mathematical Sciences and Applications. 1 (3), 1583-1586 (2011).
  • [14] Kannan, K., Rao, K. C.: Pasting lemmas for some continuous functions. Thai Journal of Mathematics. 12 (1), 245-249 (2014).
  • [15] Karaca, F., Taş, N.: Decision making problem for life and non-life insurances. Journal of Balıkesir University Institute of Science and Technology. 20 (1), 572-588 (2018).
  • [16] Mahanta, J., Das, P. K.: Results on fuzzy soft topological spaces. arXiv:1203.0634v1, (2012).
  • [17] Maji, P. K., Biswas, R., Roy, A. R.: Fuzzy soft sets. The Journal of Fuzzy Mathematics. 9 (3), 589-602 (2001).
  • [18] Molodtsov, D.: Soft set theory - first results. Computer Mathematics and its Applications. 37 (4-5), 19-31 (1999).
  • [19] Mukherjee, P., Park, C.: On fuzzy soft Bitopological spaces. Mathematics and Computer Sciences Journal. 10 (7), 1-8 (2015).
  • [20] Nazmul, S., Samanta, S. K.: Soft topological soft groups. Mathematical Sciences. 6 (1), 66 (2012).
  • [21] Özgür, N. Y., Taş, N.: A note on “application of fuzzy soft sets to investment decision making problem”. Journal of New Theory 7, 1-10 (2015).
  • [22] Tanay, B., Kandemir, M. B.: Topological structure of fuzzy soft sets. Computer Mathematics and its Applications 61 (10), 2952-2957 (2011).
  • [23] Tas, N. A., Özbakır, O. B.: On some mixed types of continuity on generalized neighborhood systems. Journal of Advanced Studies in Topology. 5 (2), 32-43 (2014).
  • [24] Taş, N., Özgür, N. Y., Demir, P.: An application of soft set and fuzzy soft set theories to stock management, Süleyman Demirel University Journal of Natural and Applied Sciences. 21 (2), 791-196 (2017).
  • [25] Taş, N.: Two new versions of the pasting lemma via soft mixed structure (submitted).
  • [26] Tozlu, N., Yüksel, Ş.: Soft A-sets and soft B-sets in soft topological spaces. Mathematical Sciences and Applications E-Notes. 5 (2), 17-25 (2017).
  • [27] Varol, B. P., Aygün, H.: Fuzzy soft topology. Hacettepe Journal of Mathematics and Statistics. 41 (3), 407-419 (2012).
  • [28] Zadeh, L. A.: Fuzzy sets. Information and Control. 8, 338-353 (1965).

On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure

Year 2020, , 15 - 20, 15.10.2020
https://doi.org/10.36753/mathenot.647458

Abstract

In this paper, we define the notion of a $(\upsilon _{1},\upsilon _{2})$-$g$-closed fuzzy soft set on a fuzzy soft topological space. Using this notion, we investigate some properties of a $(\upsilon _{1},\upsilon _{2})$-$g$-closed fuzzy soft set and prove a new version of the "Pasting Lemma" with mixed structure.                                                                                                                                                                                                                                                                                                           

References

  • [1] Açıkgöz, A., Ta¸s, N.: Some new mixed soft sets. Mathematical Sciences and Applications E-Notes. 2 (2), 105-118 (2014).
  • [2] Açıkgöz, A., Ta¸s, N. A., Noiri, T.: A decomposition of some types of mixed soft continuity in soft topological spaces. Filomat. 30 (2), 379-385 (2016).
  • [3] Ahmad, B., Kharal, A.: On fuzzy soft sets. Advances in Fuzzy Systems. 2009, 6 pages, Article ID 586507 (2009).
  • [4] Alcantud, J. C. R., Rambaud, S. C., Torrecillas, M. J. M.: Valuation fuzzy soft sets: a flexible fuzzy soft set based decision making procedure for the valuation of assets. Symmetry 9 (11), 253 (2017).
  • [5] Anitha, M., Selvi, R., Thangavelu, P.: Pasting lemmas for g-continuous functions. Missouri Journal of Mathematical Sciences. 21 (1), 28-33 (2009).
  • [6] Björn, A. Martio, O.: Pasting lemmas and characterizations of boundary regularity for quasiminimizers. Results in Mathematics. 55, 265-279 (2009).
  • [7] Csaszar, A.: Mixed constructions for generalized topologies. Acta Mathematica Hungarica. 122 (1-2), 153-159 (2009).
  • [8] Demir, İ., Özbakır, O. B.: Some properties of fuzzy soft proximity spaces. The Scientific World Journal. 2015, 10 pages, Article ID 752634 (2015).
  • [9] Demir. İ., Özbakır, O. B.: An extension of Lowen’s uniformity to the fuzzy soft sets. Konuralp Journal of Mathematics. 6 (2), 321-331 (2018).
  • [10] Ergül, Z. G., Yüksel, ¸S.: A new type of soft covering based rough sets applied to multicriteria group decision making for medical diagnosis. Mathematical Sciences and Applications E-Notes. 7 (1), 28-38 (2019).
  • [11] Gnanambal, Y., Balachandran, K.: On gpr-continuous functions in topological spaces. Indian Journal of Pure and Applied Mathematics. 30 (6), 581-593 (1999).
  • [12] İrkin, R., Özgür, N. Y., Taş, N.: Optimization of lactic acid bacteria viability using fuzzy soft set modelling. An International Journal of Optimization and Control: Theories and Applications (IJOCTA). 8 (2), 266-275 (2018).
  • [13] Kalaichelvi, Dr. A., Malini, P. H.: Application of fuzzy soft sets to investment decision making problem. International Journal of Mathematical Sciences and Applications. 1 (3), 1583-1586 (2011).
  • [14] Kannan, K., Rao, K. C.: Pasting lemmas for some continuous functions. Thai Journal of Mathematics. 12 (1), 245-249 (2014).
  • [15] Karaca, F., Taş, N.: Decision making problem for life and non-life insurances. Journal of Balıkesir University Institute of Science and Technology. 20 (1), 572-588 (2018).
  • [16] Mahanta, J., Das, P. K.: Results on fuzzy soft topological spaces. arXiv:1203.0634v1, (2012).
  • [17] Maji, P. K., Biswas, R., Roy, A. R.: Fuzzy soft sets. The Journal of Fuzzy Mathematics. 9 (3), 589-602 (2001).
  • [18] Molodtsov, D.: Soft set theory - first results. Computer Mathematics and its Applications. 37 (4-5), 19-31 (1999).
  • [19] Mukherjee, P., Park, C.: On fuzzy soft Bitopological spaces. Mathematics and Computer Sciences Journal. 10 (7), 1-8 (2015).
  • [20] Nazmul, S., Samanta, S. K.: Soft topological soft groups. Mathematical Sciences. 6 (1), 66 (2012).
  • [21] Özgür, N. Y., Taş, N.: A note on “application of fuzzy soft sets to investment decision making problem”. Journal of New Theory 7, 1-10 (2015).
  • [22] Tanay, B., Kandemir, M. B.: Topological structure of fuzzy soft sets. Computer Mathematics and its Applications 61 (10), 2952-2957 (2011).
  • [23] Tas, N. A., Özbakır, O. B.: On some mixed types of continuity on generalized neighborhood systems. Journal of Advanced Studies in Topology. 5 (2), 32-43 (2014).
  • [24] Taş, N., Özgür, N. Y., Demir, P.: An application of soft set and fuzzy soft set theories to stock management, Süleyman Demirel University Journal of Natural and Applied Sciences. 21 (2), 791-196 (2017).
  • [25] Taş, N.: Two new versions of the pasting lemma via soft mixed structure (submitted).
  • [26] Tozlu, N., Yüksel, Ş.: Soft A-sets and soft B-sets in soft topological spaces. Mathematical Sciences and Applications E-Notes. 5 (2), 17-25 (2017).
  • [27] Varol, B. P., Aygün, H.: Fuzzy soft topology. Hacettepe Journal of Mathematics and Statistics. 41 (3), 407-419 (2012).
  • [28] Zadeh, L. A.: Fuzzy sets. Information and Control. 8, 338-353 (1965).
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nihal Taş 0000-0002-4535-4019

Publication Date October 15, 2020
Submission Date November 15, 2019
Acceptance Date June 22, 2020
Published in Issue Year 2020

Cite

APA Taş, N. (2020). On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. Mathematical Sciences and Applications E-Notes, 8(2), 15-20. https://doi.org/10.36753/mathenot.647458
AMA Taş N. On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. Math. Sci. Appl. E-Notes. October 2020;8(2):15-20. doi:10.36753/mathenot.647458
Chicago Taş, Nihal. “On the Pasting Lemma on a Fuzzy Soft Topological Space With Mixed Structure”. Mathematical Sciences and Applications E-Notes 8, no. 2 (October 2020): 15-20. https://doi.org/10.36753/mathenot.647458.
EndNote Taş N (October 1, 2020) On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. Mathematical Sciences and Applications E-Notes 8 2 15–20.
IEEE N. Taş, “On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure”, Math. Sci. Appl. E-Notes, vol. 8, no. 2, pp. 15–20, 2020, doi: 10.36753/mathenot.647458.
ISNAD Taş, Nihal. “On the Pasting Lemma on a Fuzzy Soft Topological Space With Mixed Structure”. Mathematical Sciences and Applications E-Notes 8/2 (October 2020), 15-20. https://doi.org/10.36753/mathenot.647458.
JAMA Taş N. On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. Math. Sci. Appl. E-Notes. 2020;8:15–20.
MLA Taş, Nihal. “On the Pasting Lemma on a Fuzzy Soft Topological Space With Mixed Structure”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, 2020, pp. 15-20, doi:10.36753/mathenot.647458.
Vancouver Taş N. On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. Math. Sci. Appl. E-Notes. 2020;8(2):15-20.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.