BibTex RIS Cite

CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS

Year 2013, Volume: 1 Issue: 2, 11 - 19, 01.12.2013

Abstract

We studied the axiom of anti-invariant 2-spheres and the axiom ofco-holomorphic (2n + 1)-spheres. We proved that a nearly K¨ahlerian manifoldsatisfying the axiom of anti-invariant 2-spheres is a space of constant holomorphic sectional curvature. We also showed that an almost Hermitian manifoldM of dimension 2m ≥ 6 satisfying the axiom of co-holomorphic (2n+1)-spheresfor some n, where (1 ≤ n ≤ m − 1), the manifold M has pointwise constanttype α if and only if M has pointwise constant anti-holomorphic sectionalcurvature α

References

  • Cartan, E.: Le¸cons sur la g´eom´etrie des espaces de Riemann, Gauthier-Villars, Paris, (1946) [2] Chen, B.Y., Ogiue, K., Some characterizations of complex space forms, Duke Math. J. 40, 797-799 (1973) [3] Chen, B.Y., Ogiue, K., Two theorems on Kaehler manifolds, Michigan Math. J. 21, 225-229 (1975)
  • Gancev, G.T., Almost Hermitian manifolds similar to complex space forms, C.R. Acad. Bul- gare Sci. 32, 1179-1182 (1979)
  • Golgberg, S.I., The axiom of 2-spheres in Kaehler geometry, J. Differential Geometry 8, 177-179 (1973) [6] Gray, A., Nearly K¨ahler manifolds, J. Differential Geometry 4, 283-309 (1970)
  • Gray, A., Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. Journ. 28, 601-612 (1976)
  • Gray, A., Vanhecke, L., Almost Hermitian manifolds with constant holomorphic sectional curvature, Casopis Pro Pestovani Matematiky, Roc. 104, 170-179 (1979)
  • Harada, M., On Kaehler manifolds satisfying the axiom of antiholomorphic 2-spheres, Proc. Amer. Math. Soc. 43(1), 186-189 (1974)
  • Hervella, L.M., Naveria, A.M., Schur’s theorem for nearly K¨ahler manifolds, Proc. Amer. Math. Soc. 43(1), 186-189 (1974)
  • Hou, Z.H., On totally real submanifolds in a nearly K¨ahler manifold, Portugaliae Mathemat- ica (N.S.) 43(2), 219-231 (2001)
  • Kassabov, O.T., On the axiom of planes and the axiom of spheres in the almost Hermitian geometry, Serdica 8 no.1, 109-114 (1982)
  • Kassabov, O.T., The axiom of coholomorphic (2n + 1)-spheres in the almost Hermitian ge- ometry, Serdica 8, no.4, 391-394 (1982)
  • Kassabov, O.T., On the axiom of spheres in Kaehler geometry, C.R. Acad. Bulgare Sci. 8, no.3, 303-305 (1982).
  • Kassabov, O.T., Almost Hermitian manifolds with vanishing Bochner curvature tensor, C.R. Acad. Bulgare Sci. 63, no.1, 29-34 (2010).
  • Leung, D.S., Nomizu, K., The axiom of spheres in Riemannian geometry, J. Differential Geometry 5, 487-497 (1971)
  • Nomizu, K., Conditions for constancy of the holomorphic sectional curvature, J. Differential Geometry 8, 335-339 (1973)
  • Ta¸stan, H.M., The axiom of hemi-slant 3-spheres in almost Hermitian geometry, Bull. Malays. Math. Sci. Soc. (to appear).
  • Vanhecke, L., Almost Hermitian manifolds with J -invariant Riemann curvature tensor, Rend. Sem. Mat. Univers. Politech. Torino 34, 487-498 (1975-76)
  • Vanhecke, L., The axiom of coholomorphic (2p + 1)-spheres for some almost Hermitian man- ifolds, Tensor (N.S.) 30, 275-281 (1976)
  • Yamaguchi, S., The axiom of coholomorphic 3-spheres in an almost Tachibana manifold, K¯odai Math. Sem. Rep. 27, 432-435. (1976)
  • Yamaguchi, S., Kon, M., Kaehler manifolds satisfying the axiom of anti-invariant 2-spheres, Geometriae Dedicata 7, 403-406 (1978)
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
  • Yano, K., Mogi, I., On real representations of Kaehlerian manifolds, Ann. of Math. 2(61), 170-189 (1955) Department of Mathematics, ˙Istanbul University, Vezneciler, 34134, ˙Istanbul, TURKEY
  • E-mail address: hakmete@istanbul.edu.tr
Year 2013, Volume: 1 Issue: 2, 11 - 19, 01.12.2013

Abstract

References

  • Cartan, E.: Le¸cons sur la g´eom´etrie des espaces de Riemann, Gauthier-Villars, Paris, (1946) [2] Chen, B.Y., Ogiue, K., Some characterizations of complex space forms, Duke Math. J. 40, 797-799 (1973) [3] Chen, B.Y., Ogiue, K., Two theorems on Kaehler manifolds, Michigan Math. J. 21, 225-229 (1975)
  • Gancev, G.T., Almost Hermitian manifolds similar to complex space forms, C.R. Acad. Bul- gare Sci. 32, 1179-1182 (1979)
  • Golgberg, S.I., The axiom of 2-spheres in Kaehler geometry, J. Differential Geometry 8, 177-179 (1973) [6] Gray, A., Nearly K¨ahler manifolds, J. Differential Geometry 4, 283-309 (1970)
  • Gray, A., Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. Journ. 28, 601-612 (1976)
  • Gray, A., Vanhecke, L., Almost Hermitian manifolds with constant holomorphic sectional curvature, Casopis Pro Pestovani Matematiky, Roc. 104, 170-179 (1979)
  • Harada, M., On Kaehler manifolds satisfying the axiom of antiholomorphic 2-spheres, Proc. Amer. Math. Soc. 43(1), 186-189 (1974)
  • Hervella, L.M., Naveria, A.M., Schur’s theorem for nearly K¨ahler manifolds, Proc. Amer. Math. Soc. 43(1), 186-189 (1974)
  • Hou, Z.H., On totally real submanifolds in a nearly K¨ahler manifold, Portugaliae Mathemat- ica (N.S.) 43(2), 219-231 (2001)
  • Kassabov, O.T., On the axiom of planes and the axiom of spheres in the almost Hermitian geometry, Serdica 8 no.1, 109-114 (1982)
  • Kassabov, O.T., The axiom of coholomorphic (2n + 1)-spheres in the almost Hermitian ge- ometry, Serdica 8, no.4, 391-394 (1982)
  • Kassabov, O.T., On the axiom of spheres in Kaehler geometry, C.R. Acad. Bulgare Sci. 8, no.3, 303-305 (1982).
  • Kassabov, O.T., Almost Hermitian manifolds with vanishing Bochner curvature tensor, C.R. Acad. Bulgare Sci. 63, no.1, 29-34 (2010).
  • Leung, D.S., Nomizu, K., The axiom of spheres in Riemannian geometry, J. Differential Geometry 5, 487-497 (1971)
  • Nomizu, K., Conditions for constancy of the holomorphic sectional curvature, J. Differential Geometry 8, 335-339 (1973)
  • Ta¸stan, H.M., The axiom of hemi-slant 3-spheres in almost Hermitian geometry, Bull. Malays. Math. Sci. Soc. (to appear).
  • Vanhecke, L., Almost Hermitian manifolds with J -invariant Riemann curvature tensor, Rend. Sem. Mat. Univers. Politech. Torino 34, 487-498 (1975-76)
  • Vanhecke, L., The axiom of coholomorphic (2p + 1)-spheres for some almost Hermitian man- ifolds, Tensor (N.S.) 30, 275-281 (1976)
  • Yamaguchi, S., The axiom of coholomorphic 3-spheres in an almost Tachibana manifold, K¯odai Math. Sem. Rep. 27, 432-435. (1976)
  • Yamaguchi, S., Kon, M., Kaehler manifolds satisfying the axiom of anti-invariant 2-spheres, Geometriae Dedicata 7, 403-406 (1978)
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
  • Yano, K., Mogi, I., On real representations of Kaehlerian manifolds, Ann. of Math. 2(61), 170-189 (1955) Department of Mathematics, ˙Istanbul University, Vezneciler, 34134, ˙Istanbul, TURKEY
  • E-mail address: hakmete@istanbul.edu.tr
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hakan Mete Taştan This is me

Publication Date December 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 2

Cite

APA Taştan, H. M. (2013). CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS. Mathematical Sciences and Applications E-Notes, 1(2), 11-19.
AMA Taştan HM. CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS. Math. Sci. Appl. E-Notes. December 2013;1(2):11-19.
Chicago Taştan, Hakan Mete. “CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes 1, no. 2 (December 2013): 11-19.
EndNote Taştan HM (December 1, 2013) CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS. Mathematical Sciences and Applications E-Notes 1 2 11–19.
IEEE H. M. Taştan, “CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS”, Math. Sci. Appl. E-Notes, vol. 1, no. 2, pp. 11–19, 2013.
ISNAD Taştan, Hakan Mete. “CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes 1/2 (December 2013), 11-19.
JAMA Taştan HM. CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS. Math. Sci. Appl. E-Notes. 2013;1:11–19.
MLA Taştan, Hakan Mete. “CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 2, 2013, pp. 11-19.
Vancouver Taştan HM. CARTAN-TYPE CRITERIONS FOR CONSTANCY OF ALMOST HERMITIAN MANIFOLDS. Math. Sci. Appl. E-Notes. 2013;1(2):11-9.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.