BibTex RIS Cite

ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS

Year 2013, Volume: 1 Issue: 2, 72 - 83, 01.12.2013

Abstract

Let R be a topological group-groupoid.We define a categoryT GGdCov(R) of coverings of R and a category T GGdOp(R) of actions of R ontopological groups and then prove the equivalence of these categories. Further,if R is topological ring-groupoid then we define a category T RGdCov(R) ofcoverings of R and a category T RGdOp(R) of actions of R on topological ringsand then prove the equivalence of these categories

References

  • Brown, R., Topology and Groupoids, Booksurge LLC, 2006.
  • Brown, R. and Danesh-Naruie, G., The Fundamental Groupoid as a Topological Groupoid, Proc. Edinb. Math. Soc., (1975), Vol. 19, (series 2), Part 3, 237-244.
  • Brown, R., Danesh-Naruie, G. and Hardy, J. P. L., Topological groupoids II: Covering mor- phisms and G-spaces, Math. Nachr., (1976), 74: 143-145.
  • Brown, R., ˙I¸cen, ˙I. and Mucuk, O., Holonomy and Monodromy Groupoids, Banach Center Publ.Polish Acad. Sci., Warsaw(2001), Vol.54, 9-20.
  • Brown, R. and Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc., (1994), 115: 97-110.
  • Gabriel, P. and Zisman, M., Categories of Fractions and Homotopy Theory, Springer-Verlag, Heidelberg, (1967).
  • Hardy, J. P. L., Topological groupoids: Coverings and Universal Constructions, PhD Thesis, University College of North Wales, (1974).
  • ˙I¸cen, ˙I. and ¨Ozcan, A.F., Topological Crossed Modules and G-groupoids, Algebras Groups Geom., (2001), 18: 401-410.
  • ˙I¸cen, ˙I., ¨Ozcan, A.F. and G¨ursoy, M.H., Topological Group-groupoids and Their Coverings, Indian J. Pure Appl. Math., (2005), 36(9): 493-502.
  • Mackenzie, K. C. H., General Theory of Lie Groupoids and Lie Algebroids, New York: Cam- bridge University Press, (2005).
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales England, (1993).
  • Mucuk, O., Coverings and Ring-Groupoids, Georgian Math. J., (1998), Vol:5, 5:475-482.
  • Mucuk, O. and ˙I¸cen, ˙I., Coverings of Groupoids, Hadronic J. Suppl., (2001) 16: 183-96.
  • ¨Ozcan, A.F., ˙I¸cen, ˙I. and G¨ursoy, M.H., Topological Ring-groupoids and Liftings, Iran. J. of Sci. Technol. Trans. A., (2006), Vol.30, 355-362.
  • ˙In¨on¨u University-Science and Art Faculty, Department of Mathematics, Malatya, Turkey, E-mail address: abdullah.ozcan@inonu.edu.tr
Year 2013, Volume: 1 Issue: 2, 72 - 83, 01.12.2013

Abstract

References

  • Brown, R., Topology and Groupoids, Booksurge LLC, 2006.
  • Brown, R. and Danesh-Naruie, G., The Fundamental Groupoid as a Topological Groupoid, Proc. Edinb. Math. Soc., (1975), Vol. 19, (series 2), Part 3, 237-244.
  • Brown, R., Danesh-Naruie, G. and Hardy, J. P. L., Topological groupoids II: Covering mor- phisms and G-spaces, Math. Nachr., (1976), 74: 143-145.
  • Brown, R., ˙I¸cen, ˙I. and Mucuk, O., Holonomy and Monodromy Groupoids, Banach Center Publ.Polish Acad. Sci., Warsaw(2001), Vol.54, 9-20.
  • Brown, R. and Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc., (1994), 115: 97-110.
  • Gabriel, P. and Zisman, M., Categories of Fractions and Homotopy Theory, Springer-Verlag, Heidelberg, (1967).
  • Hardy, J. P. L., Topological groupoids: Coverings and Universal Constructions, PhD Thesis, University College of North Wales, (1974).
  • ˙I¸cen, ˙I. and ¨Ozcan, A.F., Topological Crossed Modules and G-groupoids, Algebras Groups Geom., (2001), 18: 401-410.
  • ˙I¸cen, ˙I., ¨Ozcan, A.F. and G¨ursoy, M.H., Topological Group-groupoids and Their Coverings, Indian J. Pure Appl. Math., (2005), 36(9): 493-502.
  • Mackenzie, K. C. H., General Theory of Lie Groupoids and Lie Algebroids, New York: Cam- bridge University Press, (2005).
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales England, (1993).
  • Mucuk, O., Coverings and Ring-Groupoids, Georgian Math. J., (1998), Vol:5, 5:475-482.
  • Mucuk, O. and ˙I¸cen, ˙I., Coverings of Groupoids, Hadronic J. Suppl., (2001) 16: 183-96.
  • ¨Ozcan, A.F., ˙I¸cen, ˙I. and G¨ursoy, M.H., Topological Ring-groupoids and Liftings, Iran. J. of Sci. Technol. Trans. A., (2006), Vol.30, 355-362.
  • ˙In¨on¨u University-Science and Art Faculty, Department of Mathematics, Malatya, Turkey, E-mail address: abdullah.ozcan@inonu.edu.tr
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

A.fatih Özcan This is me

Publication Date December 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 2

Cite

APA Özcan, A. (2013). ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS. Mathematical Sciences and Applications E-Notes, 1(2), 72-83.
AMA Özcan A. ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS. Math. Sci. Appl. E-Notes. December 2013;1(2):72-83.
Chicago Özcan, A.fatih. “ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS”. Mathematical Sciences and Applications E-Notes 1, no. 2 (December 2013): 72-83.
EndNote Özcan A (December 1, 2013) ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS. Mathematical Sciences and Applications E-Notes 1 2 72–83.
IEEE A. Özcan, “ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS”, Math. Sci. Appl. E-Notes, vol. 1, no. 2, pp. 72–83, 2013.
ISNAD Özcan, A.fatih. “ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS”. Mathematical Sciences and Applications E-Notes 1/2 (December 2013), 72-83.
JAMA Özcan A. ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS. Math. Sci. Appl. E-Notes. 2013;1:72–83.
MLA Özcan, A.fatih. “ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 2, 2013, pp. 72-83.
Vancouver Özcan A. ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS. Math. Sci. Appl. E-Notes. 2013;1(2):72-83.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.