BibTex RIS Cite

ON NADLER'S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES

Year 2013, Volume: 1 Issue: 1, 1 - 8, 01.06.2013

Abstract

Recently, H. Aydi, M. Abbas and C. Vetro [Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topology Appl.159 (2012), 3234-3242] have obtained a version of the well-known Nadler fixedpoint theorem for multi-valued maps on complete partial metric spaces. Inthis note we prove a new partial metric version of Nadler’s theorem and derivesome consequences of it

References

  • Abbas, M. and Nazir, T., Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory Appl. 2012 : 1 (2012), 19 pp.
  • Agarwal, R.P., Alghamdi, M.A. and Shahzad, M., Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl. 2012 : 40 (2012), 11 pp.
  • Alghamdi, M.A., Shahzad, M. and Valero O., On fixed point theory in partial metric spaces, Fixed Point Theory Appl. 2012 : 175 (2012), 30 pp.
  • Altun, I. and Acar, O., Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012), 2642-2648.
  • Altun, I., Sola, F. and Simsek, H., Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.
  • Aydi, H., Abbas, M. and Vetro, C., Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topology Appl. 159 (2012), 3234-3242.
  • Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43-53.
  • ´Ciri´c, Lj., Samet, B., Aydi, H. and Vetro, C., Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398-2406.
  • Karapinar, E. and Erhan, I.M., Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894-1899.
  • Karapinar, E. and Romaguera, S., Nonunique fixed point theorems in partial metric spaces, preprint.
  • Matthews, S.G., Partial metric topology, in: Proc. 8th Summer Conference on General Topol- ogy and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
  • Nadler, S.B., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
  • Romaguera, S., Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl. 159 (2012), 194-199.
  • Instituto Universitario de Matem´atica Pura y Aplicada. Universitat Polit`ecnica de Val`encia. Cam´ı de Vera s/n, 46022 Valencia, Spain
  • E-mail address: sromague@mat.upv.es
Year 2013, Volume: 1 Issue: 1, 1 - 8, 01.06.2013

Abstract

References

  • Abbas, M. and Nazir, T., Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory Appl. 2012 : 1 (2012), 19 pp.
  • Agarwal, R.P., Alghamdi, M.A. and Shahzad, M., Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl. 2012 : 40 (2012), 11 pp.
  • Alghamdi, M.A., Shahzad, M. and Valero O., On fixed point theory in partial metric spaces, Fixed Point Theory Appl. 2012 : 175 (2012), 30 pp.
  • Altun, I. and Acar, O., Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012), 2642-2648.
  • Altun, I., Sola, F. and Simsek, H., Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.
  • Aydi, H., Abbas, M. and Vetro, C., Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topology Appl. 159 (2012), 3234-3242.
  • Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43-53.
  • ´Ciri´c, Lj., Samet, B., Aydi, H. and Vetro, C., Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398-2406.
  • Karapinar, E. and Erhan, I.M., Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894-1899.
  • Karapinar, E. and Romaguera, S., Nonunique fixed point theorems in partial metric spaces, preprint.
  • Matthews, S.G., Partial metric topology, in: Proc. 8th Summer Conference on General Topol- ogy and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
  • Nadler, S.B., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
  • Romaguera, S., Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl. 159 (2012), 194-199.
  • Instituto Universitario de Matem´atica Pura y Aplicada. Universitat Polit`ecnica de Val`encia. Cam´ı de Vera s/n, 46022 Valencia, Spain
  • E-mail address: sromague@mat.upv.es
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Salvador Romaguera This is me

Publication Date June 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Romaguera, S. (2013). ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES. Mathematical Sciences and Applications E-Notes, 1(1), 1-8.
AMA Romaguera S. ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES. Math. Sci. Appl. E-Notes. June 2013;1(1):1-8.
Chicago Romaguera, Salvador. “ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES”. Mathematical Sciences and Applications E-Notes 1, no. 1 (June 2013): 1-8.
EndNote Romaguera S (June 1, 2013) ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES. Mathematical Sciences and Applications E-Notes 1 1 1–8.
IEEE S. Romaguera, “ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES”, Math. Sci. Appl. E-Notes, vol. 1, no. 1, pp. 1–8, 2013.
ISNAD Romaguera, Salvador. “ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES”. Mathematical Sciences and Applications E-Notes 1/1 (June 2013), 1-8.
JAMA Romaguera S. ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES. Math. Sci. Appl. E-Notes. 2013;1:1–8.
MLA Romaguera, Salvador. “ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 1, 2013, pp. 1-8.
Vancouver Romaguera S. ON NADLER’S FIXED POINT THEOREM FOR PARTIAL METRIC SPACES. Math. Sci. Appl. E-Notes. 2013;1(1):1-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.