Year 2013,
Volume: 1 Issue: 1, 18 - 35, 01.06.2013
Cyriaque Atındogbe
,
Lionel Berardbergery
Abstract
❧✐❦❡ ❤②♣❡rs✉❡r❢❛❝❡s✳ ❙❡❝t✐♦♥ ✸ ✐♥tr♦❞✉❝❡s ❛ss♦❝✐❛t❡ ♠❡tr✐❝ t♦ ❛ ♥♦r♠❛❧✐③❡❞ ❧✐❣❤t❧✐❦❡ ❤②♣❡rs✉r❢❛❝❡ t❤r♦✉❣❤ ♣s❡✉❞♦✲✐♥✈❡rs✐♦♥ ♦❢ ❞❡❣❡♥❡r❛t❡ ♠❡tr✐❝s ❛♥❞ s❡❝t✐♦♥ ✹ ❞❡❛❧s ✇✐t❤ t❤❡ ❞❡t❡r♠✐♥❛♥t ♦❢ t❤❡ ❛ss♦❝✐❛t❡ ♠❡tr✐❝ r❡❧❛t✐✈❡ t♦ t❤❡ ✐♥❞✉❝❡❞ ✈♦❧✉♠❡ ❡❧❡♠❡♥t✳ ■♥ s❡❝t✐♦♥ ✺ ✇❡ ♣r❡s❡♥t ❛ t❡❝❤♥✐❝❛❧ ❧❡♠♠❛ ❛❝❝♦✉♥t✐♥❣ ♦♥ ❤♦✇ ✐♥❞✉❝❡❞ ❣❡♦♠❡tr✐❝ ♦❜❥❡❝ts ❝❤❛♥❣❡ ✉♥❞❡r ❝❤❛♥❣❡ ✐♥ ♥♦r♠❛❧✐③❛t✐♦♥ ❢♦❧❧♦✇❡❞ ❜② ❛ ❝♦♠♣❛t✐❜✐❧✐t② r❡s✉❧t ♥❡❡❞❡❞ ✐♥ t❤❡ ❢♦r♠✉❧❛t✐♦♥ ♦❢ ♦✉r ♥♦r♠❛❧✐③❛t✐♦♥ ❝♦♥str❛✐♥ts✳ ❚❤❡r❡❛❢t❡r✱ ✇❡ ❝♦♥s✐❞❡r ✐♥ s❡❝t✐♦♥ ✻ t❤❡ ✐♥✈❛r✐❛♥t ♥♦r♠❛❧✐③✐♥❣ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥ ❛♥❞ ✐♥tr♦❞✉❝❡ ✐♥ s❡❝t✐♦♥ ✼ t❤❡ ❝❛❧✐❜r❛t❡❞ ❞✐✈❡r❣❡♥❝❡ ♦❢ s❡❝t✐♦♥s ❛❧♦♥❣ t❤❡ ♥✉❧❧ ❤②♣❡rs✉❡r❢❛❝❡s✳ ❋✐♥❛❧❧②✱ ✇❡ ♣r❡s❡♥t t❤❡ ♠❛✐♥ r❡s✉❧t ✐♥ s❡❝t✐♦♥ ✽ ❢♦❧❧♦✇❡❞ ❜② ❛ ❜❛s✐❝ ❡①❛♠♣❧❡ ♦♥ t❤❡ ♥✉❧❧ ❝♦♥❡ ∧3⊂ R4✳
References
- Akivis, M. A. and Goldberg, V. V. On Some Methods of Construction of Invariant Normaliza- tions of Lightlike Hypersurfaces. Di . Geom. Appl. 12 (2000), p. 121-143.
- Akivis, M. A. and Goldberg, V. V. Lightlike Hypersurfaces on Manifolds Endowed with a Con- formal Structur of Lorentzian Signature. Acta Appl. Math. 57 (1999), p.155-185.
- Atindogbe, C.Normalization and prescribed extrinsic scalar curvature on lightlike hypersurfaces, Journal of Geometry and Physics 60 (2010) 1762â1770.
- Atindogbe, C. Blaschke type normalization on light-Like Hypersurfaces, Journal of Mathemat- ical Physics, Analysis, Geometry 6 (2010) No. 4, pp. 362-382.
- Atindogbe, C. Scalar curvature on lightlike hypersurfaces Applied Sciences, Vol.11, 2009, pp. 18.
- Atindogbe, C. and Ezin, J.-P. and J. Tossa Pseudo-inversion of degenerate metrics Int. J. of Mathematics and Mathematical Sciences, 55 (2003), 3479-3501.
- Atindogbe, C. and K.L. Duggal, K. L. Conformal screen on lightlike hypersurfaces., Int. J. of Pure and Applied Math., 11 (2004), 421-442.
- E. Bekkara, C. Frances and A. Zeghib On lightlike geometry: isometric actions and rigidity aspects. C. R. Acad. Sci. Paris, Ser. (2006), 1343, p. 317-321.
- Carter, B. Killing Horizons and Orthogonally Transitive Groups in Space-time. J. Math. Phys. (1969), 1, p. 70-81.
- Chrusciel, P. T. Delay, E. and Galloway, G. J. Howard, R. Regularity of the horizon and the Area Theorem, Annales Henri Poincaré, 2001,2, p.109-178. gr-qc/0001003.
- Duggal, K. L. On scalar curvature in lightlike geometry, J. Geom. Phy., 57 (2007) 473-481.
- Duggal, K. L. and Bejancu, A. Lightlike submanifolds of semi-Riemannian Manifolds and Ap- plications. Kluwer Acad. Publishers, Dordrecht, Volume 364, 1996.
- Katsuno, K. Null Hypersurfaces in Lorentzian Manifolds. Math. Proc. Cab. Phil. Soc. 88 (1980), p. 175-182.
- Kupeli, D. N. Singular Semi-Riemannian Geometry. Kluwer Acad. Publishers, Dordrecht, vol- ume 366, 1996.
- Larsen, J. C. Singular Semi-Riemannian Geometry. J. Geom. Phys. 9 (1992), No. 1, p. 3-23.
- Larsen, J. C. Submanifold Geometry. J. Geom. Anal. 4 (1994),No. 2, p. 189-205.
- Penrose, R. The Twistor Geometry of Light Rays. Geometry and Physics, Clas- sical Quantum Gravity (1997), 14 (1A), p. A299-A323.
- Pinl, M. Zur Theorie del Halbisotrope Flachen im R4. J. Geom. Phys 1 (1992), 9, p. 3-23.
- Taub, A. H. Singular Hypersurfaces in General Rrelativity. Illinois J. Math 1 (1957), p.378-388.
- Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey- Calavi, 01 BP 613 Porto-Novo, Bénin E-mail address: atincyr@gmail.com, atincyr@imsp-uac.org. Institut Elie Cartan, Université de Lorraine,, B.P. 239 54506 Vandğuvre-lès- Nancy Cedex, France
- E-mail address: lionel.berard-bergery@univ-lorraine.fr
DISTINGUISHED NORMALIZATION ON NON-MINIMAL NULL HYPERSURFACES
Year 2013,
Volume: 1 Issue: 1, 18 - 35, 01.06.2013
Cyriaque Atındogbe
,
Lionel Berardbergery
Abstract
We show that on a non-minimal lightlike hypersurface with nullity
degree 1, there exists a unique null transversal (normalizing) vector eld with
prescribed calibrated divergence, for which the induced connection and the LeviCivita
connection of the associate non-degenerate metric coincide.
References
- Akivis, M. A. and Goldberg, V. V. On Some Methods of Construction of Invariant Normaliza- tions of Lightlike Hypersurfaces. Di . Geom. Appl. 12 (2000), p. 121-143.
- Akivis, M. A. and Goldberg, V. V. Lightlike Hypersurfaces on Manifolds Endowed with a Con- formal Structur of Lorentzian Signature. Acta Appl. Math. 57 (1999), p.155-185.
- Atindogbe, C.Normalization and prescribed extrinsic scalar curvature on lightlike hypersurfaces, Journal of Geometry and Physics 60 (2010) 1762â1770.
- Atindogbe, C. Blaschke type normalization on light-Like Hypersurfaces, Journal of Mathemat- ical Physics, Analysis, Geometry 6 (2010) No. 4, pp. 362-382.
- Atindogbe, C. Scalar curvature on lightlike hypersurfaces Applied Sciences, Vol.11, 2009, pp. 18.
- Atindogbe, C. and Ezin, J.-P. and J. Tossa Pseudo-inversion of degenerate metrics Int. J. of Mathematics and Mathematical Sciences, 55 (2003), 3479-3501.
- Atindogbe, C. and K.L. Duggal, K. L. Conformal screen on lightlike hypersurfaces., Int. J. of Pure and Applied Math., 11 (2004), 421-442.
- E. Bekkara, C. Frances and A. Zeghib On lightlike geometry: isometric actions and rigidity aspects. C. R. Acad. Sci. Paris, Ser. (2006), 1343, p. 317-321.
- Carter, B. Killing Horizons and Orthogonally Transitive Groups in Space-time. J. Math. Phys. (1969), 1, p. 70-81.
- Chrusciel, P. T. Delay, E. and Galloway, G. J. Howard, R. Regularity of the horizon and the Area Theorem, Annales Henri Poincaré, 2001,2, p.109-178. gr-qc/0001003.
- Duggal, K. L. On scalar curvature in lightlike geometry, J. Geom. Phy., 57 (2007) 473-481.
- Duggal, K. L. and Bejancu, A. Lightlike submanifolds of semi-Riemannian Manifolds and Ap- plications. Kluwer Acad. Publishers, Dordrecht, Volume 364, 1996.
- Katsuno, K. Null Hypersurfaces in Lorentzian Manifolds. Math. Proc. Cab. Phil. Soc. 88 (1980), p. 175-182.
- Kupeli, D. N. Singular Semi-Riemannian Geometry. Kluwer Acad. Publishers, Dordrecht, vol- ume 366, 1996.
- Larsen, J. C. Singular Semi-Riemannian Geometry. J. Geom. Phys. 9 (1992), No. 1, p. 3-23.
- Larsen, J. C. Submanifold Geometry. J. Geom. Anal. 4 (1994),No. 2, p. 189-205.
- Penrose, R. The Twistor Geometry of Light Rays. Geometry and Physics, Clas- sical Quantum Gravity (1997), 14 (1A), p. A299-A323.
- Pinl, M. Zur Theorie del Halbisotrope Flachen im R4. J. Geom. Phys 1 (1992), 9, p. 3-23.
- Taub, A. H. Singular Hypersurfaces in General Rrelativity. Illinois J. Math 1 (1957), p.378-388.
- Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey- Calavi, 01 BP 613 Porto-Novo, Bénin E-mail address: atincyr@gmail.com, atincyr@imsp-uac.org. Institut Elie Cartan, Université de Lorraine,, B.P. 239 54506 Vandğuvre-lès- Nancy Cedex, France
- E-mail address: lionel.berard-bergery@univ-lorraine.fr