Research Article
BibTex RIS Cite
Year 2015, Volume: 3 Issue: 2, 64 - 73, 30.10.2015
https://doi.org/10.36753/mathenot.421333

Abstract

References

  • [1] L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (1), 600-607, 2005.
  • [2] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves , J. Geom. 74, 97-109, 2002.
  • [3] R. Encheva, G. Georgiev, Shapes of space curves, Journal for Geometry and Graphics, Vol 7, No. 2, 145-155, 2003.
  • [4] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
  • [5] B. O’Neill, Elementary Differential Geometry, Academic Press, 2006.
  • [6] D. J. Struik, Lectures on Classical Differential Geometry, Dover, 1961.

SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME

Year 2015, Volume: 3 Issue: 2, 64 - 73, 30.10.2015
https://doi.org/10.36753/mathenot.421333

Abstract

In this paper, we are investigating that under which conditions of
the geodesic curvature of unit speed curve γ that lies on the unit sphere, the
curve c which is obtained by using γ, is a spherical helix or slant helix.

References

  • [1] L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (1), 600-607, 2005.
  • [2] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves , J. Geom. 74, 97-109, 2002.
  • [3] R. Encheva, G. Georgiev, Shapes of space curves, Journal for Geometry and Graphics, Vol 7, No. 2, 145-155, 2003.
  • [4] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
  • [5] B. O’Neill, Elementary Differential Geometry, Academic Press, 2006.
  • [6] D. J. Struik, Lectures on Classical Differential Geometry, Dover, 1961.
There are 6 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Bülent Altunkaya

Levent Kula

Publication Date October 30, 2015
Submission Date June 26, 2015
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Altunkaya, B., & Kula, L. (2015). SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME. Mathematical Sciences and Applications E-Notes, 3(2), 64-73. https://doi.org/10.36753/mathenot.421333
AMA Altunkaya B, Kula L. SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME. Math. Sci. Appl. E-Notes. October 2015;3(2):64-73. doi:10.36753/mathenot.421333
Chicago Altunkaya, Bülent, and Levent Kula. “SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME”. Mathematical Sciences and Applications E-Notes 3, no. 2 (October 2015): 64-73. https://doi.org/10.36753/mathenot.421333.
EndNote Altunkaya B, Kula L (October 1, 2015) SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME. Mathematical Sciences and Applications E-Notes 3 2 64–73.
IEEE B. Altunkaya and L. Kula, “SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME”, Math. Sci. Appl. E-Notes, vol. 3, no. 2, pp. 64–73, 2015, doi: 10.36753/mathenot.421333.
ISNAD Altunkaya, Bülent - Kula, Levent. “SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME”. Mathematical Sciences and Applications E-Notes 3/2 (October 2015), 64-73. https://doi.org/10.36753/mathenot.421333.
JAMA Altunkaya B, Kula L. SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME. Math. Sci. Appl. E-Notes. 2015;3:64–73.
MLA Altunkaya, Bülent and Levent Kula. “SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 2, 2015, pp. 64-73, doi:10.36753/mathenot.421333.
Vancouver Altunkaya B, Kula L. SOME CHARACTERIZATIONS OF SLANT AND SPHERICAL HELICES DUE TO SABBAN FRAME. Math. Sci. Appl. E-Notes. 2015;3(2):64-73.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.